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COMPLETE MINIMAL SURFACES AND

PUNCTURED COMPACT RIEMANN SURFACES

KICHOON YANG

Introduction

A conformal map from a complex domain D into R3 is said to be
minimal if its component functions are harmonic. Historically speak­
ing, the theory of minimal surfaces arose in an attempt to find the
surface of least area among those bounded by a fixed curve. This prob­
lem, so called the Plateau problem, was given a solution by Douglas
and Rado in the thirties. (The Plateau problem for higher dimensional
submanifolds of Rn was given a satisfactory treatment only quite re­
cently by Federer, Fleming, Almgren, De Giorgi, and Reifenberg. See
[F] or [G] for a detailed account.)

A Riemann surface (without boundary) M is an abstract surface
that looks locally like a complex domain. More precisely, each point
p E M has a neighborhood diffeomorphic to a domain Dp C C and
on an overlap Dp n Dq transition functions are given by biholomor­
phic maps. In this article we consider conformal minimal maps from
Riemann surfaces into ]R3.

Consider a conformal minimal immersion f : M -+ ]R3. The normal
Gauss map of f is the map

cp: M -+ 52 = the unit 2-sphere

taking p E M to the unit outward normal vector at f(p). Via the
stereographic projection

52 -+CU{oo}

the map cp can be thought of as a meromorphic function on M. A large
number of research articles have been published in recent years study­
ing various value distribution properties of the meromorphic function
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cp. The value distribution theory deals in large part with complete min­
imal surlaces of infinite total curvature; impressive results have been
obtained through the works Chern, Osserman, Xavier, Fujimoto, and
others. The reader may consult a recent article by Mo and Osserman
[MO] and references cited therein for further study. Our primary fo­
cus, however, will be on complete minimal surlaces with finite total
curvature.

The tangential Gauss map of a conformal minimal immersion f
M _ ]R3 is the map

ep: M - G(3,2)

taking p E M to the oriented tangent plane f*TpM c ]R3. G(3, 2) is the
Grassmann manifold of oriented 2-planes in ]R3, and it lies naturally in
CP2, the space of lines in C2 • Moreover, the minimality of f implies
that the map

ep:M _CP2

is holomorphic. An important theorem of Chern and Osserman [CO]
states that a complete minimal surface M is of finite total Gaussian
curvature if and only if M is holomorphically equivalent to a compact
Riemann surface Mg punctured at a finite number of points and the
tangential Gauss map extends holomorphically to all of Mg • T,lms the
study of complete minimal surlaces of finite total curvature is inti­
mately linked to the theory of compact Riemann surlaces, and we wish
to exhibit some of the fruitful interactions between the two subject
matters. In particular, we give a discussion of the immersion problem
of Osserman: Given r E Z+ and a compact Riemann surface M g of
genus g, find all complete conformal minimal immersions of finite total
curvature

Mg\L _]R3

with IL I = r. In a recent work [Y3] the author has shown that there
exists at least a one-parameter family of such immersions with r ~ 4g.
(It is easy to find examples for large r.) We discuss this and other
related results in 3.

1. Minimal surfaces in R3
: the Weierstrass representation

Let M be a Riemann surlace, and consider a conformal immersion
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Conformality means that the induced metric j*dsi;, dsi; the Euclidean
metric, is compatible with the complex structure in the following sense:
If z is a local holomorphic coordinate, then the induced metric can be
written as

ds2 = h(z)dz· dz

for some h(z) > o. Writing z = x + iy, where x and y are real-valued,
we can rewrite the above as

The local functions (x, y) are called isothermal coordinates.
Let COO(M) denote the space of smooth complex-valued functions

on M. The Laplacian of M is an operator

defined by

~ = - (~) &jozoz.

Using the chain rule one sees that ~ is well-defined.
The Gaussian curvature of (M, ds2 ) can be written as

1
K = 2~log(h).

The mean curvature of the immersion f is related to the Laplacian
of f by

2H = (±)~f . e3,

where e3 is a unit vector field normal to f(M). Proofs of the above
two formulae can be found in [VI] p. 7 and p. 12.

It follows from the preceding formula (note that ~f is normal to f)
that

H == 0 if and only if ~f == o.
If the immersion f satisfies one of the above conditions, then it is

said to be minimal.
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PROPOSITION 1. There does not exist a conformal minimal immer­
SIOn

f: M -+R3

from a compact Riemann surface M.

Proof. Suppose we had such a map f = (fi). Then each fi would
be a harmonic function on M. The maximum principle for harmonic
functions states that a harmonic function on a compact surface (with­
out boundary) must reduce to a constant, and this implies that f would
have to be a constant map.

Suppose we have a conformal minimal immersion

f:M -+R3
,

and let z be a local coordinate. The minimality of f gives

82fi j8z8z = o.
Define local functions (7'/i) by

(*) 7'/i = 8fij8z.

Each 7'/i is holomorphic since its partial with respect to z vanishes.
Define local holomorphic I-forms ((i) by

(i = 7'/idz.

H z is another local coordinate and if (i = fjidi, then

fji = 8fij8z = (8fi j8z)(dzjdz) = 7'/ idzjdz

so that the forms ((i) are globally defined on M.
Since (x, y) are isothermal we have

8 8 8 8 8 8
h(z) = (J*8x,f*8) = (J*ay'/*8y)' (f*8x'/*8y) =0.

It follows that

and that

(t)

The holomorphic I-forms ((i) give rise to a well-defined holomorphic
map

if!j: M -+ Cp2, Z 1--+ [7'/1 (z), 7'/2(z), 7'/3(Z)],

where [(1Ji(z))] denotes the complex line in C3 through (7'/i(z)).
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REMARK. Because of (t) the image of the Gauss map actually lies
in the complex quadric Q1 C CP2. The quadric Q1 can be naturally
identified with the Grassmann manifold G(3,2) of oriented 2-planes in
]R3, and upon this identification the Gauss map takes p E M to the
(negatively oriented) tangent plane f*Tp(M).

From (*) we see that the minimal immersion f can be recovered
from the holomorphic I-forms «(i):

where we assume that f(zo) = 0 E 1R3 . In particular, the forms «(i)
have no real periods as the above integrals are well-defined.

Reversing the above process we can manufacture minimal surfaces
from holomorphic I-forms.

PROPOSITION 2. Let M be a Riemann surface, and suppose we have
holomorpbic l-forms «(i) on M satisfying

(1)

(2)

(3)

Then

L /77 i I2 > 0, where (i = 77idz locally;

L(77 i )2 = 0;

((j) have no real periods.

defines a conformal minimal immersion of M into 1R3 with f(zo) = O.

For a proof of this well-known result see [YI] pp.I5-I6.

REMARK. Note that when M is simply connected, e.g., M = C, the
condition (3) is satisfied automatically. So, even in the absence of (3)
the holomorphic I-forms «(i) define a conformal minimal immersion on
the universal cover of M.

Let c.p be a meromorphic function on a Riemann surface M, and also
let Jl be a not identically zero holomorphic I-form on M. We further
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require that <p has a pole of order m at p E M if and only if J-L has a
zero of order 2m at p. Put

(4)

= !(1- <p2)J-L,

= t(1 + <p2)J-L,

= <pJ-L.

The (i's have no common zeros, hence the condition (1) is met. The
condition (2) is also eaSily satisfied. Therefore, the forms ((i) given in
(4) define a conformal minimal immersion

f = fc; : M -+ ]R3

given that they have no real periods. Up to congruence every minimal
surface in]R3 arises in this manner, and {p, cp} is called the Weierstrass
pair representing fc;.

We record that the induced metric of fe is given by, in terms of the
Weierstrass pair,

ds2 = 11112(1 + Icpl2?dz . dz,

where J-L = 11dz locally.

REMARK. The meromorphic function <p is related to the Gauss map
as follows. Let

<Pt: M -+ S2

denote the normal Gauss map of a conformal minimal immersion f,
I.e.,

c"Pt(p) = the unit outward normal vector to f(p).

Then
<p = 1r 0 <Pt :M -+ S2 -+ C U {oo},

where 1r denotes the stereographic projection.

EXAMPLES.

a) The Catenoid is given by the Weierstrass pair

1
{<p(z) =z, fL = 2"dz}

z
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on M = C\{O}, where z is the usual complex coordinate. It is a surface
of revolution obtained by revolving the Catenary x 3 = cosh(x l ) about
the xl-axis.

b) Take M = C, J.t = dz, and <p(z) = z. The resulting minimal
surface is called Enneper's surface. For z E C, its image (ji(z)) E ]R3

is given by

I
jl(Z) = Re(z - 3z3 ),

j2(z) = Re(iz + iz3 ),

j3(z) = Rez2.

Enneper's surface is not an embedded surface in R.3.
c) Let

A = ZE!! iZ cC

denote the integral lattice. Requiring the projection

7r: C -t CIA

be holomorphic M = ClA becomes a Riemann surface, called a com­
plex torus. Let p( z) denote the Weierstrass function relative to A,
I.e.,

p(z) = :2 +L Cz : w )2 - ~2 ) ,

where the sum is taken over all W E A\{O}. The function p(z), mero­
morphic function on C, is an elliptic function with periods in A. It
has a double pole at each w E A with the principal part <z_lw)2 and is
holomorphic elsewhere. The function p(z) projects down to M to give
a meromorphic function on M. We again use the symbol p to denote
this function. (At the same time we confuse z with 7r(z).)" Costa's
surface [e] is given by the Weierstrass pair

I
{J.t = p(z)dz, <p(z) = 2y'2;p(2)/p'(z)}

on M\{O,!, ~}. Hoffman and Meeks [HMI] showed that Costa's sur­
face is actually embedded in R.3.
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2. The Riemann-Roch theorem and Weierstrass points

Let Mg denote a compact Riemann surface of genus g. Topologically,
M g is a torus with g handles.

A meromorphic function on M g is simply a holomorphic map

cp : Mg -+ Cpl = C U {oo},

where it is customary to assume that cp(Mg ) 1= {oo}. Let cp be a non­
constant meromorphic function on M g • The following equidistribution
property is well-known: each value q E Cpl is taken a fixed number,
called the degree of cp, of times counting multiplicity. In particular, the
total number of zeros is equal to that of poles.

A meromorphic I-form (also called an Abelian differential) I-t on Mg

is locally given by
71(z )dz,

where z is a local coordinate and "l(z) is a meromorphic function. Let
. cp be a meromorphic function on M. Then the total differential dcp is

a meromorphic I-form. Locally

dcp = cp'(z)dz.

Let J.L be ameromorphic I-form on M g given locally by 71(z)dz. Then
the residue of I-t at a point p E M g is defined to be

To see that the residue is well-defined just observe that

where 'Y is a small path around p of index 1.

PROPOSITION 3. Let I-t be a meromorphic I-form on M g • Then the
total residue must vanish, i.e.,

L Respl-t=O.
pEM
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Proof. Triangulate M g so that each singularity of 11 lies in the inte­
rior of a triangle. Let .6. t ,··· ,.6.k be the triangles in this trianglulation.
Then

I: Respll = 2~ I: ill,
1l'"Z "(;

where 'Yi is the boundary of .6.i • Since each edge appears exactly twice
with opposite signs the integral vanishes.

A divisor D on M g is a finite formal sum

D = I: aiPi, ai E Z\{O}, Pi E M g •

If ai ;::: 0 for every i, then D is called an integral divisor and we write
D ;::: o. The set of all divisors on M g , denoted by Div(Mg ), forms
an Abelian group under addition: it is isomorphic to the free Abelian
group on the points of M g •

There is a group homomorphism

deg: Div(Mg ) -+ Z, degD = Lai.

By way of notation we put

Ker(deg) = DivO(Mg ).

Let cp be a not identically zero meromorphic function on M g • It is
convenient to use the sheaf notation and write

cp E HO(Mg , M*),

where M* denotes the sheaf of germs of not identically zero meromor­
phic functions on M g. The divisor of cp, denoted by (cp), is

(cp) = I: aiPi - I: bjqj,

where the Pi's are the zeros (Pt with multiplicity ai) and the q/s are
the poles (qj with multiplicity bj) of cp. We also write

(cp)o =I: aiPi, (cp)oo =I: bjqj.

By the equidistribution property we then have

(cp) E DivO(Mg ).

A divisor is called a principal divisor ifit is (cp) for some cp E HO(Mg , M*).
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REMARK. The set of principal divisors is exactly DivO(Mg ) if and
only if the genus is zero, i.e., M g is biholomorphic to Cpl = C u {CX)}.

Let J.t f:. 0 be a meromorphic I-form on M g • Take a (finite) open
cover (Ua ) of M g and write

J.tlu" = "Ia(z)dz.

The divisor of J.t, denoted by (J.t), is defined to be the divisor D such
that

Define the order of J.t at p E Mg to be

ordpJ.t = ordp7],

where J.t = 7]dz locally. A divisor is called a canonical divisor if it is of
the form (J.t) for some meromorphic I-form J.t.

PROPOSITION 4. Let'P E HO(Mg , M*). Then

deg(d<p) = 2g - 2.

In fact, tbe degree ofan arbitrary canonical divisor on M g is 2g - 2.

To prove Proposition 4 we first need to establish the
Riemann-Hurwitz Formula. Consider a nonconstant holomor-

phic map
f: M g! ~ M g2 "

Let m denote the degree of f, i.e., every value q E Mg2 is assumed m
times taking into account multiplicity. We know that about any point
p E M gl there is the local normal form

fez) = zn, nE Z+.

The number n - 1 is called the branch number at p, and is denoted by
bf(p). Let
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be the total branching number of f. We then have

2(gl - 1) - 2m(g2 - 1) = Bf.

Proof. Let S = {f(p) E M g2 : bf(P) > O}. S is a finite set and we
can triangulate M g2 so that every point of S occurs as a vertex. Put

F2 = the number of triangles,

E2 = the number of edges,

V2 = the number of vertices

of this triangulation. Lifting this triangulation to M g1 via f we obtain
a triangulation of M g1 with F l = mF2, El = mE2, VI = mV2 - B.
Now

and the result follows.

Proof of Proposition 4. Near a pole pE M g of r.p we have the Laurant
series expansion

r.p(z) = C_kZ-k + ... + Co + CIZ + ... (Ck =1= 0).

Thus

Near a nonpole q E Mg we have the Taylor series expansion

and
dr.p(z) = (ncnzn- l + ... )dz.

It follows that
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where P runs over all poles with multiplicity k(p) and q runs over all
branch points with branch number n -1 = brAq) with the proviso that
q is not a pole. Now

deg <p = m = L k(p) = the total number of poles,

and

The Riemann-Hurwitz formula applied to <p now gives

2(g - 1) = - 2m + B

= -2 L k(p) + L bcp(q) + L(k(p) -1)

= L bcp(q) = L(k(p) -1) = deg(d<p).

For D E Div(M g ) we put

L(D) = {'P E HO(Mg,M*): ('P) + D ~ O} U{O}.

For some ai, bj E Z+, Pi, qj E M g distinct points we can write

We then see that 'P E L(D)\{O} if and only if'P is holomorphic outside
UPi and

or<LIj'P ~ bj ; ordpi'P ~ -ai·

The following properties concerning L(D) are easily verified:
a) L(D) is a complex vector space;
b) L(D) = 0 if degD < 0;
c) L(0) = constant functions ~ c.
PROPOSITION 5. Let D ~ 0 be an integral divisor on M g • Tben

dim L(D) ~ degD + 1.



Complete minimal surfaces and punctured compact Riemann surfaces 321

Proof. Write D = EaiPi, ai > 0, the Pi'S distinct. (IT D = 0, then
dimL(D) = 1.) Suppose r.p E L(D). Then about each Pi we have the
Laurant expansion

00

r.p = L CikZf,
k=-ai

where Zi is a local coordinate about Pi. Map

~ : L(D) -. Cdeg(D),

This map is linear with

U'I-+ (C"k) -a" < k < -1.T I' 1 __

Ker(~) = {constant functions}.

In fact we have the famous
Riemann-Roch Theorem. For any divisor D E Div(Mg )

dimL(D) = degD - 9 + 1 +dimL(Z - D),

where Z is any canonical divisor.
For a very readable proof of the Riemann-Roch theorem we refer

the reader to [Ke] pp.291-293.

DEFINITION. Let P E Mg be an arbitrary point. A positive integer
m is called a gap at P if there does not exist a meromorphic function
r.p on M g with

(cp)oo "'" mp.

The point P is called a Weierstrass point if the set of gaps at P is not

{1,2,··· ,g}.

EXAMPLES.

a) Consider Cpl = C U{oo}. IT pE C, then put

1
r.p(z) = (z _ p)m' 00 1-+ 0.
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If p = 00, then we put cp(z) = zm. Either way (cp)oo = mp, and there
are no gaps anywhere.

b) Consider a complex torus M = ClA, and p E M be arbitrary.
Then there does not exist a meromorphic function ep with (cp)oo = p:
if there were such a cp, then cp would give a homeomorphism between
M and Cpl. So 1 is a gap at p. Now by the Riemann-Roch theorem

dimL(mp) = m, m ~ 2.

Consequently, there exists a meromorphic function in L(mp)\L((m ­
l)p), and m is not a gap value. So at an arbitrary point of a complex
torus the set of gaps is {I}, and there are no Weierstrass points.

PROPOSITION 6. Let p E Mg be arbitrary. Then there are exactly
9 gaps {ml' ... ,mg } at p with

ml = 1 < ... < m g ~ 2g - 1.

Proof. We first show that there are no gaps ~ 2g. The preceding
examples take care of the cases g = 0, 1. We assume that g ~ 2. For
D with degD ~ 2g -1 we have L(Z - D) = 0, where Z is a canonical
divisor. It follows that

dimL(Z - mp) = dimL(Z - (m -1)p) = O.

On the other hand

dimL(Z - mp) = (2g - 2 - m) +1- g + dimL(mp),

dimL(Z - (m - l)p) = (2g - 2 - m + 1) +1- g + dimL((m -1)p).

Therefore

dimL(mp) - dimL((m -1)p) = 1, m ~ 2g,

and there are no gaps ~ 2g at p. We now show that for any m ~ 1,

dimL(mp) - dimL((m -1)p) = 0 or 1.
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Suppose that dim L(mp) - dim L((m - l)p) i= O. Given a meromorphic
function 'P in L(mp) we have the Laurant series expansion

where z is a local coordinate centered at p. Note that

a-m i= 0 if and only if'P E L(mp)\L((m - l)p).

Recall the linear map

Suppose 'PI, 'P2 E L(mp)\L( (m - l)p). Then we can find Cl, C2 such
that

i.e., Cl 'PI +C2'P2 E L( (m - l)p). It follows that one of the 'Pi'S is in the
span of the other, and consequently

dim L(mp) = dimL((m - l)p) = 1.

We have shown that a positive integer m is a gap at p if and only if

dim L(mp) - dim L((m - l)p) = 0;

m is not a gap at p if and only if

dimL(mp) = dimL((m - l)p) = 1.

Now for any point p we have

dimL(O) = 1, dimL((2g -l)p) = g, dimL(2gp) = 9 + 1.

The rest follows.
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PROPOSITION 7. Let W denote the number of Weierstrass points
onMg • Then

a) 2g + 2::; W::; (g -l)g(g + 1);
b) W = 2g +2 ifand only if at every Weierstrass point the gaps are

given by {I, 3",' ,2g - I};
c) W = (g - 1)g(g + 1) ifand only ifat every Weierstrass point the

gaps are given by {1,2,··· ,g -l,g + I}.

For a proof of Proposition 7 see [FKJ pp.85-86.
Recall that a function element (or a power series) determines upon

analytic continuation a multivalued holomorphic function on C. Let
Cl, . .. ,C2g+2 (g ~ 2) be distinct points in C. Consider the Riemann
surface M of the multivalued function

w(z) = y'rr(z - Ci), 00 1-+ 00.

We think of w as a multivalued function C U {oo} -+ C U {oo}. The
lliemann surface M is a two-sheeted cover of C U {oo} branched over
Cl,'" , C2g+2' Note that w is a single-valued holomorphic function
M -+ C U {oo}, i.e., w is a meromorphic function on M. Moreover,
the degree of w is 2; the Weierstrass points of M are precisely at
Cl, • •• , C2g+2'

Compact Riemann surfaces of genus at least 2 arising in the above
manner are known as hyperelliptic surfaces. More precisely, a compact
lliemann surface of genus 9 ~ 2 is said to be hyperelliptic if there exists
a meromorphic function of degree 2 on it. It is not difficult to show that
every Riemann surface of genus 2 is hyperelliptic. A generic compact
lliemann surface of genus at least 3 is not hyperelliptic, however.

Let Mg be a Riemann surface of genus at least 2, and also let W
denote the number of Weierstrass points on it. If W = 2g + 2, then at
a Weierstrass point p, 2 is a nongap. Thus there exists a meromorphic
function cp whose polar divisor is given by 2p. In particular, the degree
of cp is 2, showing that Mg is hyperelliptic. In fact, it can be shown
that M g is hyperelliptic if and only if the number of Weierstrass points
is 2g + 2.

3. Complete minimal surfaces of finite total curvature
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Let f : M --+ ]R3 be a conformal minimal immersion from a Riemann
surface, and also let ~ f : M --+ CP2 be its Gauss map. We say that
the Gauss map is algebraic if

a) M is biholomorphic to a compact Riemann surface M 9 punctured
at a finite number of points {Pt,· .. ,Pr};

b) ~ f extends to a holomorphic map ~ : Mg --+ CP2.
Suppose ~f is algebraic. Then the image ~(Mg) is an algebraic

curve: ~(Mg) can be realized as the zero locus of a complex homoge­
neous polynomial in 3 variables. The degree of ~ f can be defined as
the degree of a polynomial defining ~(Mg). The following result is a
variant of so called the Wirtinger theorem from Algebraic Geometry,
and a proof can be found in [Yl] pp. 24-25.

PROPOSITION 8. Let Tf denote the total curvature of f, i.e.,

Tf = fM KdA,

where K ~ 0 is the Gaussian curvature and dA is the area element of
the induced metric. Then

In particular, the total curvature is an integral multiple of27r.

A Riemannian manifold (N, ds~) is said to be complete if it is a
complete metric space. It is a well-known result that N is complete if
and only if every geodesic can be extended for arbitrary large values
of the arclength parameter.

A minimal surface f : M --+ ]R3 is said to be complete if it is complete
with respect to the induced metric. We have the following fundamental
result.

The Chern-Osserman Theorem [CO]. Suppose f : M --+ ]R3 is
a complete minimal surface. Then the total curvature is finite if and
only if the Gauss map is algebraic.

Let f : M --+ ]R3 be a conformal minimal immersion, and suppose
that the Gauss map is algebraic. An end of the minimal surface f is,
by definition, f(fl i ), where fli is a sufficiently small punctured disc
in M centered at a puncture Pi. Note that any path approaching the
puncture Pi has to have an infinite arclength.
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PROPOSITION 9. Let f : M ~ R3 be a complete conformal minimal
immersion of finite total curvature. Also let r denote the number of
ends or punctures, and 9 the genus of the underlying compact Riemann
surface. Then

Tf :s: 411"(1 - 9 - r).

Proof. Identify M with M g \ {PI, ... ,Pr} and note that each (i =

~dz gives a meromorphic 1-form on M g • Let mj denote the maximum
order of the poles of «(j) at Pj. Picking suitable constants (c i ) the
meromorphic 1-form

has a pole of order exactly mj at each Pj, 1 :s: j :s: r. Since «() is a
canonical divisor on M g we have

2g - 2 = deg«()o - deg«()oo.

But deg(()o is just the number of zeros of ( counted according to
multiplicity, and

deg(()o = L mj + (2g - 2) ;::: 2g - 2 + 2r,

since each m j :2:: 2. (We leave the verification of this as an exercise to
the reader.) But

-Tf = 211". (the number of zeros of ()

since the number of zeros of ( is also the number of intersections be­
tween the algebraic curve CI>(Mg ) and the hyperplane {(zi) : I;cizi =
O}.

Jorge and Meeks [JM] showed that the inequality of Proposition 9
must in fact be an equality for a complete embedded minimal surface.

PROPOSITION 10 (OSSERMAN). Let f : M ~ R3 be a complete
conformal minimal immersion of :finite total curvature. Consider the
meromorphic Gauss map

<p = 11" 0 CI>t :M ~ C U {oo}.
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If 'P misses more than 3 points, then f(M) is a plane.

Proof. Identify M with M g \ {PI, ... ,Pr}. We have V.t, 'P}, the Weier­
strass pair of f. The meromorphic Gauss map 'P extends to M g giving
a holomorphic map

Applying a rotation to f(M) if necessary we may (and do) assume:
a) support( cp)oo n {PI, ... ,Pr} = 0;
b) (cp)oo consists only of simple poles.
Put

m = deg cp, B = the total branching number of cp.

Applying the Riemann-Hurwitz formula to cp we obtain

9 = -m + 1 - B /2, or B = 2(g + m-I).

We now look at the differential J.l and see how it extends to all of M g •

J.l has double zeros at the poles of'P and no other zeros. Near Pi, one
of the punctures, we have

with 2 ~ mi ~ 00, where z is a local coordinate centered at Pi. Thus
J.l extends to a meromorphic I-form {.t on M g with a pole of order mi

at each Pi (and no other poles). So

support({.t)oo = {PI,·· . ,Pr}, ordpi = mi 2': 2,

support({.t)oo n support( cp)oo = 0.

The degree of the divisor of J.l, (J.l), is 2g - 2 since (J.l) is a canonical
divisor. Hence

r

2g-2=2m- Lmio
i=I
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Since mi ~ 2 we must have
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9 -1 + d::; m.

Suppose c.p misses the points ql,· .. ,qk of epl. Then

Each qi has m preimages counting multiplicity. So

r

km ::; 2)1 + ni) = r +L ni,
i=1

where 1 + ni (ni ~ 0) is the multiplicity of cj; at Pi. Now L: ni is the
sum of branching numbers at {PI>··· ,Pr}, hence it does not exceed
the total branching number B. It follows that

(t) km::; r + B = r + 2(g +m-I).

Adding the inequalities in (*) and (t) and rewriting we obtain

1 - 9 ::; (3 - k)m.

The inequality in (*) says that r - m ::; 1-g. So r - m ::; (3 - k )m, or

r::; (4 - k)m.

But since M is not compact r ~ 1, hence k < 4.

It is not known whether there exists a complete conformal minimal
immersion M ~ ]R3 of finite total curvature whose meromorphic Gauss
map misses exactly 3 points.

REMARK. In 1988 Fujimoto [F} proved that the meromorphic Gauss
map of any complete minimal surface in ]R3, whether with finite total
curvature or not, can not omit more than 4 points. Since it is not hard
to construct a complete minimal surface whose meromorphic Gauss
map misses 4 or more points Fujimoto's bound is sharp. In 1989 Os­
serman and Mo [MO} gave the following refinement of Fujimoto's result:
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the meromorphic Gauss map of a nonplanar complete minimal surface
in R,3 of infinite total curvature takes on every value infinitely often,
with the possible exception of 4 points. The following question seems
to be still open: Let f : M -+ R,3 be a nonplanar complete minimal sur­
face with infinite total curvature. Then does the meromorphic Gauss
map of f take on every value of its image infinitely often?

We now state the
Immersion Problem. Given r E Z+ and a compact Riemann

surface M g find all complete conformal minimal immersions of finite
total curvature

f: Mg\I: -+ R.J

with IL: I = r.
Klotz and Sario [KS] proved that there exists a complete minimal

surface in ]R3 of finite total curvature of every genus. Hoffman and
Meeks [HM2] later constructed a complete minimal surface in ]R3 with
finite total curvature of every genus with 3 punctures that is actually
embedded.

A major step toward solving the immersion problem was taken by
Gackstatter and Kunert [GK].

THEOREM A (GAcKSTATTER-KuNERT). Any compact Riemann
surface of genus 9 can be immersed as a complete minimal surface
with finite total curvature in ]R3 with at most 4g + 1 punctures.

Later the author [Y2] proved the following result.

THEOREM B (YANG). Given any nonconstant meromorphic func­
tion FI on a compact Riemann surface Mg of genus 9 > 0 there exists
another meromorphic function F2 such that {dFI , F2 } is the Weier­
strass pair defining a complete conformal minimal immersion of finite
total curvature into ]R3 defined on Mg punctured at the supports of
the polar divisors of FI and F2 •

Since there are always an abundant supply of meromorphic functions
on a Riemann surface Theorem B implies that any compact Riemann
surface can be immersed in ]R3 as a complete minimal surface with
finite total curvature with finitely many punctures. Indeed in [Y2] the
author using Theorem B recoved the Gackstatter-Kunert theorem and
proved the following result.
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THEOREM C (YANG). Any hyperelliptic Riemann surface can be
immersed in ]R3 as a complete minimal surface with finite total curva­
ture with at most- 3g +4 punctures.

We now give a theorem improving the results in Theorems A-C.

THEOREM D [Y3]. Let M g be any compact Riemann surface of
genus 9 > O. Then there exists at least a one-parameter family of
nonisometric complete confonnal minimal immersions of finite total
curvature

Mg\L: -+ ]R3,

where :E is a finite set. For 9 = 1, we can have 'E with I:E I~ 5. For
9 ~ 2 and M g hyperelliptic, we can have'E with IL I ~ 3g + 2. For
9 ~ 2 and M g arbitrary, we can have 'E with I'E I~ 4g.

Proof. Let Mg be a compact Riemann surface of genus 9 > 0, and
also let F1 be any nonconstant meromorphic function on My. For some
bi E Z+ and distinct points Pi E M g we have

n

(F1 )ex> = L: biPi.
i=1

Put
d =L bi = deg(F1 )ex>'

Consider the meromorphic 1-form dF1 • We have

For some aj E Z+ and distinct points qj E M g we have

m

(dF1 )o = L ajqj.
j=1

Since

is a canonical divisor we must have

deg(dF1 ) = 2g - 2
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so that
L aj = (2g - 2) +n +d.

Introduce a divisor D E Div(Mg ) by

m n

D = L ajqj - L CiPi = D+ - D- ,
j=1 i=1

where the Cj'S are some positive integers satisfying the conditions

The first condition means that

and the second condition means that

degD = -g.

Consider the complex vector space

L(-D) = {F E HO(Mg,M*) : (F) ~ D} U {O}.

So a not identically zero meromorphic function F is a member of
L(-D) if and only if it has zeros of order at least aj at qj and poles of
order at most Ci at Pi (or no poles). Now deg(dFI) = 2g - 2 ~ 0 and
since (dFdoo > 0 we must have

support(dF1)0 =1= 0.

Consequently nonzero constant functions can not be in L( -D). By the
Riemann-Roch theorem

dimL( -D) = deg( -D) - 9 + 1 + dimL((dFd + D)

= 1 + dimL((dFd + D) ~ 1.

So we can (and do) choose a nonconstant meromorphic function G E
L(-D). (We may replace G by a nonzero complex multiple, and obtain
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a one-parameter family of noncongruent minimal surfaces in ]R3. We
will not exploit this fact in the present article, however.) We put

m I n

(G)o = L o'jqj + L o'm+kqm+ki (G)oo =L CiPi
j=l k=l i=l

with

The two inequalities mean that G E L(-D), and the equality comes
from the fact that (G) is a principal divisor. Define a nonconstant
meromorphic function F2 on My by

A

F2 = Lca/G
c
:"

a=l

where.A· 2(n + m +1-1) + (4g +1), and (ca) is a nonzero vector in
CA to be chosen suitably later. Consider meromorphic I-forms F2dF1
and FidF1 on My. Observe that

{qm+b··· ,qm+l} C support(F2dFdoo C {qI, ,qm+liPI,··· ,Pn},

{q!, ... ,qm+d C support(FidF1)oo C {qI, ,qm+liPI,··· ,Pn}.

We claim that we can choose (ca) E CA\ {O} such that the forms F2dF1
and FidF1 have neither residues nor periods on My. Put

Ri,a = RespidFt!Ga,

Rj,a = Resqj dFt!Ga ,

Rk,a = Resqm+"dF1/G
a

,

where Res denotes the residue. We then have

Respi F2 dF1 = L eaRi,a,

Resqj F2dF1 = L caRj,a,

Resqm+"F2dF1 = L caRk,a.
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So the meromorphic I-form F2dF1 on M g has no residues if and only
if the cex's satisfy the following system of linear equations:

The system has n +m +1equations. We know that on a compact Rie­
mann surface the total residue of any meromorphic I-form must vanish.
It follows that if any n + m +1- 1 residues of F2dF1 were to vanish,
then the remaining residue would have to vanish also. Consequently,
we may (and do) throw out an equation from the linear system (I).
Let (el, ... ,e2g) be I-cycles on M g representing a canonical homology
basis. Put

Pa,ex=j dFt/G ex , l:::;a:::;2g, l:::;a:::;A.
ea

So the ea-period of F2dF1 is given by the sum I: CexPa,Q' It follows
that the differential F2 dF1 has no periods on M g if and only if

(11)

This system is linear in (cex ) and contains at most 2g independent
equations. We now consider the differential FidF1 • Put

Similarly define Rj,2ex, and Rk,2Q. Thus the residue of FidF1 at Pi is
given by

~

Ri(Cex ) = L C~Ri,2ex + 2 L CexCpRi,ex+{j.
ex=1 I$Q<P$~

We also let Rj(cex ) and Rk(CQ) denote the residues of FidF1 at ql and
qm+k respectively. Observe that Ri(Cex ), Rj(cex ), and Rk(Cex ) are all
homogeneous polynomials in (cQ ) of degree 2. The zero locus in C~

of one of these polynomials is a (possibly degenerate) homogeneous



334 Kichoon Yang

quadric. Now the meromorphic differential FidF1 has no residues if
and only if the car's satisfy

(Ill)

Again using the vanishing of the total residue we can throw out one of
the equations from (Ill). Put

Pa,20l =1dFtfG20l , Pa,ar+P =1dFt/GOl+P,
ea ea

where 1 ~ a,(3 ~ A, 1 ~ a ~ 2g. So the ea-period of FidF1 is given by

Pa(Car ) = L C~Pa,2ar + 2 L cOlCpPa,Ol+P'
l~Ol<P~'x

The form FidF1 has no periods on M g if and only if

(IV)

Each Pa(cOl ) is a homogenous polynomial in (car) of degree 2. The
number of equations in the system (I-IV) is 2(n+m+l-1)+4g = A-I.
We can now establish our earlier claim: First note that the solution set
of an equation in (I-IV) is either a hyperplane or a (possibly degenerate)
homogenous quadric in C,x. At any rate it corresponds to an algebraic
hypersurface in p'x-1. But we know that A-1 algebraic hypersurfaces
in p,X-1 must intersect: This follows' at once from the codimension
formula: for any two algebraic varieties Vi, V2 C pN

codim(Vi n V2 ) ~ codim Vi + codim Vi.

In fact we see that the set of COl'S solving (I-IV) is itself a homogeneous
affine variety. In particular, if a vector (COl) solves the system, then so
does any complex multiple of it. We let

Sol c c,x

denote this solution variety. Fixc = (car) E Sol\{O}. We define holo­
morphic I-forms (1, (2, (3 on
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by the formulae

1 1( 2)( = 2 1-F2 dFl,

2 z 2
( = 2(1 +F2 )dFl,

(3 = F2dF1•

The fact that the differentials F2dF1 and FidF1 have no residues
and no periods on M 9 guarantees that the holomorphic differentials
(1, (2, (3 have no real periods on M. Consequently the formula

defines a conformal minimal immersion M -+ R.3. At a puncture

each (E has at worst a pole, hence the Gauss map of f extends holo­
morphically to all of M 9 (cf. [Yl] p.29). It is not hard to see that any
path approaching one of the punctures has an infinite arclength. Take
a Pi, for example. IT we let z be a holomorphic coordinate centered at
Pi and write

then

h(z) = 2L 17{12 = C/lzl2m + higher order terms, m 2:: 2

since dF1 has a pole of order bi + 1 2:: 2 at Pi. The arclength of any
path approaching Pi must be infinite since the induced metric on M is
given by

rds~ = h(z)dz· dz

near t h~ puncture. Thus the induced metric is complete. We have
shown that each

C = (ca) E Sol\{O}
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gives rise to a complete conformal minimal immersion of finite total
curvature

le: M = Mg\L -? R3
,

where L: denotes the finite puncture set. Let C = (ca) E 501\{O} be
given by

where p is any nonzero complex number. Let {dF} = dF1 , F2 } be the
Weierstrass pair coming from the choice CE 501\{O}. We see that

Let
h(z)dz. di

denote a local expression for the induced metric of j = fe. We compute
that

h = 17712(1 + IpF212)2,

where dF1 = 77dz locally. On the other hand, the induced metric of le
is given by h(z )dz . di with

It follows that the surfaces le and fe are not isometric for Ipl =f:. 1 show­
ing that there exists at least a one-parameter family of nonisometric
complete conformal minimal immersions of finite total curvature

Let r denote the number of punctures, i.e., r = 1L: I. SO r = n +m + 1,
where

n = the number of distinct poles of F 1 ,

m = the number of distinct zeros of dF1 •

Moreover,
m + 1::; (3g - 2) + d + n,
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where d = deg(F1)oo. This is so since

m + 1~ I:<';i ~ L Ci = 3g - 2 +d + n.

Thus
r ~ (3g - 2) +d + 2n.

Suppose M g is a complex torus, i.e., 9 = 1. Then for any point p E M g

we can find a meromorphic function F on M9 such that

(F)oo = 2p.

Set F1 = F. Then d = 2 and n = 1. Hence

r ~ 5.

Suppose M g is hyperelliptic, and let p E M g be a Weierstrass point.
We then know that there exists a meromorphic function F on M g with

(F)ex> = 2p.

Letting F1 = F we see that d = 2, n = 1, and

r ~ 3g +2.

We now suppose that M g is an arbitrary Riemann surface of genus
9 ~ 2. On M g there are at least 2g +2 Weierstrass points. Let p E M g

be a Weierstrass point. This means that the gap sequence at p is not
given by {I, 2,'" ,g}. Since there are exactly 9 gaps it follows that
we must have a nogap d ~ g. (The worst possible gap sequence at p is
{I, 2" .. ,g - 1, 9 + I}.) But this means that there is a meromorphic
function F on M g with

(F)ex> = dp.

Letting F} = F we have n = 1, and

r ~ (3g - 2) + (d +2n) ~ (3g - 2) + (g +2) ~ 4g.

The stage is set for the following

CONJECTURE.

a) There exists a compact Riemann surface M 9 that can not be
conformally minimally and completely immersed into ]R3 with finite
total curvature with less than 4g punctures;

b) there exists a hyperelliptic Riemann surface M g that can not be
so immersed in ]R3 with less than 3g + 2 punctures.
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