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COMPLETE MINIMAL SURFACES AND
PUNCTURED COMPACT RIEMANN SURFACES

KIcHOON YANG

Introduction

A conformal map from a complex domain D into R? is said to be
minimal if its component functions are harmonic. Historically speak-
ing, the theory of minimal surfaces arose in an attempt to find the
surface of least area among those bounded by a fixed curve. This prob-
lem, so called the Plateau problem, was given a solution by Douglas
and Rado in the thirties. (The Plateau problem for higher dimensional
submanifolds of R™ was given a satisfactory treatment only quite re-
cently by Federer, Fleming, Almgren, De Giorgi, and Reifenberg. See
[F] or [G] for a detailed account.)

A Riemann surface (without boundary) M is an abstract surface
that looks locally like a complex domain. More precisely, each point
P € M has a neighborhood diffeomorphic to a domain D, C C and
on an overlap D, N D, transition functions are given by biholomor-
phic maps. In this article we consider conformal minimal maps from
Riemann surfaces into R3.

Consider a conformal minimal immersion f : M — R3. The normal
Gauss map of f is the map

@: M — 8% = the unit 2-sphere

taking p € M to the unit outward normal vector at f(p). Via the
stereographic projection

S? - C U {oo0}

the map ¢ can be thought of as a meromorphic function on M. A large
number of research articles have been published in recent years study-
ing various value distribution properties of the meromorphic function
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¢. The value distribution theory deals in large part with complete min-
imal surfaces of infinite total curvature; impressive results have been
obtained through the works Chern, Osserman, Xavier, Fujimoto, and
others. The reader may consult a recent article by Mo and Osserman
[MOJ} and references cited therein for further study. Qur primary fo-
cus, however, will be on complete minimal surfaces with finite total
curvature.

The tangentiel Gauss map of a conformal minimal immersion f :
M — R3 is the map

®: M— G(3,2)

taking p € M to the oriented tangent plane f.T,M C R3. G(3,2)is the
Grassmann manifold of oriented 2-planes in R3, and it lies naturally in
CP?, the space of lines in C2. Moreover, the minimality of f implies
that the map
’ ‘ ®: M- CP2

is holomorphic. An important theorem of Chern and Osserman [CO]
states that a complete minimal surface M is of finite total Gaussian
curvature if and only if M is holomorphically equivalent to a compact
Riemann surface M, punctured at a finite number of points and the
tangential Gauss map extends holomorphically to all of M. Thus the
study of complete minimal surfaces of finite total curvature is inti-
mately linked to the theory of compact Riemann surfaces, and we wish
to exhibit some of the fruitful interactions between the two subject
matters. In particular, we give a discussion of the immersion problem
of Osserman: Given r € Z* and a compact Riemann surface M, of
genus g, find all complete conformal minimal immersions of finite total

curvature
Mg\ Z - R?

with | }_| = r. In a recent work [Y3] the author has shown that there
exists at least a one-parameter family of such immersions with r < 4g.
(It is easy to find examples for large r.) We discuss this and other
related results in 3.

1. Minimal surfaces in R®: the Weierstrass representation

Let M be a Riemann surface, and consider a conformal immersion

f=(H: MR,
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Conformality means that the induced metric f*ds%, ds% the Euclidean
metric, is compatible with the complex structure in the following sense:
If 2 is a local holomorphic coordinate, then the induced metric can be
written as

ds? = h(2)dz - dz

for some h(z) > 0. Writing z = z + iy, where z and y are real-valued,
we can rewrite the above as

ds® = h(z,y)(dr? + dy?).

The local functions (z, y) are called isothermal coordinates.
Let C°°(M) denote the space of smooth complex-valued functions
on M. The Laplacian of M is an operator

A : C®(M) — C®(M)

defined by
A=— (%) 82/8:295.

Using the chain rule one sees that A is well-defined.
The Gaussian curvature of (M, ds?) can be written as

K= -;—Alog(h).

The mean curvature of the immersion f is related to the Laplacian
of f by
2H = (L)Af - es,

where e3 is a unit vector field normal to f(M). Proofs of the above
two formulae can be found in [Y1] p. 7 and p. 12.
It follows from the preceding formula (note that Af is normal to f)
that
H =0if and only if Af =0.

If the immersion f satisfies one of the above conditions, then it is
said to be minimal.
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PROPOSITION 1. There does not exist a conformal minimal immer-
sion
f:M—-R?
from a compact Riemann surface M.

Proof. Suppose we had such a map f = (f*). Then each f* would
be a harmonic function on M. The maximum principle for harmonic
functions states that a harmonic function on a compact surface (with-
out boundary) must reduce to a constant, and this implies that f would
have to be a constant map.

Suppose we have a conformal minimal immersion

f: M- R?,

and let z be a local coordinate. The minimality of f gives
o2 f*020z = 0.

Define local functions (1) by
(*) n* = 8f*/dx.
Each 7’ is holomorphic since its partial with respect to Z vanishes.
Define local holomorphic 1-forms ({*) by

¢t =1n'dz.
If 7 is another local coordinate and if ¢ = 7j'dZ, then
ii* = 8ft /0% = (8f/02)(dz/d3) = n'dz/d%
so that the forms ((*) are globally defined on M.
Since (z,y) are isothermal we have

a 0 a a 0 0

h(z) - (f*égsf*'a";) - <f*ég’f*%)’ (f*a_‘r,f*b‘:‘;) =0.

It follows that .
h(z)=2) In'l* >0,
and that
() > () =o.
The holomorphic 1-forms ({*) give rise to a well-defined holomorphic
map
®;: M — CP?, z [n'(2),n°(2),n°(2)],

where [(7%(2))] denotes the complex line in C* through (n(2)).
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REMARK. Because of (1) the image of the Gauss map actually lies
in the complex quadric Q; C CP2. The quadric @, can be naturally
identified with the Grassmann manifold G(3,2) of oriented 2-planes in
R3, and upon this identification the Gauss map takes p € M to the
(negatively oriented) tangent plane f,Tp(M).

From (*) we see that the minimal immersion f can be recovered
from the holomorphic 1-forms (¢*):

f‘(z)=2R£/z: ¢,

where we assume that f(z) = 0 € R3. In particular, the forms (¢*)
have no real periods as the above integrals are well-defined.

Reversing the above process we can manufacture minimal surfaces
from holomorphic 1-forms.

PROPOSITION 2. Let M be a Riemann surface, and suppose we have
holomorphic 1-forms ((*) on M satisfying

(1) Z In'[> > 0, where ¢' = n*dz locally;
2) > =0

(3) (¢?) have no real periods.

Then

f=(f)=2Re /z(cf)

defines a conformal minimal immersion of M into R® with f(zo) = 0.
For a proof of this well-known result see [Y1] pp.15-16.

REMARK. Note that when M is simply connected, e.g., M = C, the
condition (3) is satisfied automatically. So, even in the absence of (3)
the holomorphic 1-forms (¢*) define a conformal minimal immersion on
the universal cover of M.

Let ¢ be a meromorphic function on a Riemann surface M, and also
let ¢ be a not identically zero holomorphic 1-form on M. We further
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require that ¢ has a pole of order m at p € M if and only if 1 has a
zero of order 2m at p. Put

Cl = %(1 - 902)”7
(4) 2 =3(1+¢%p,
¢ =ep

The (*’s have no common zeros, hence the condition (1) is met. The
condition (2) is also easily satisfied. Therefore, the forms ({*) given in
(4) define a conformal minimal immersion

f=f¢:M—)R3

given that they have no real periods. Up to congruence every minimal
surface in R? arises in this manner, and {u, ¢} is called the Weierstrass
pair representing fe.

We record that the induced metric of f; is given by, in terms of the

Weierstrass pair,
ds® = |n*(1 + |ol*)?dz - dz,

where p = ndz locally.

REMARK. The meromorphic function ¢ is related to the Gauss map

as follows. Let
$F: M — §*

denote the normal Gauss map of a conformal minimal immersion f,
ie.,
<I>‘fl‘(p) = the unit outward normal vector to f(p).

Then
gp=7ro<1>}‘:M—>Sz—->CU{oo},

where 7 denotes the stereographic projection.

EXAMPLES.
a) The Catenoid is given by the Weierstrass pair

{p(z) =2, p= %dz}
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on M = C\{0}, where z is the usual complex coordinate. It is a surface
of revolution obtained by revolving the Catenary z3 = cosh(z') about
the z!-axis.

b) Take M = C, p = dz, and ¢(2) = 2. The resulting minimal
surface is called Enneper’s surface. For z € C, its image (f*(z)) € R?
is given by

f1(z) = Re(z — %23),
f3(2) = Re(iz + 32°),
f(z) = Re 2%
Enneper’s surface is not an embedded surface in R3.

c) Let
A=Z@iZCC

denote the integral lattice. Requiring the projection
n:C—>C/A

be holomorphic M = C/A becomes a Riemann surface, called a com-
plex torus. Let p(z) denote the Weierstrass function relative to A,

1e.,
1 1 1
)= 5+ X (= ).

where the sum is taken over all w € A\{0}. The function p(z), mero-
morphic function on C, is an elliptic function with periods in A. It
has a double pole at each w € A with the principal part (z—_l—w—)-g and is
holomorphic elsewhere. The function p(z) projects down to M to give
a meromorphic function on M. We again use the symbol p to denote
this function. (At the same time we confuse z with 7(z).): Costa’s
surface [C] is given by the Weierstrass pair

{1 = p(2)dz, 9(2) = 2/2mp(3)/¥(2)}

on M\{0, 3, +}. Hoffman and Meeks [HM1] showed that Costa’s sur-

face is actually embedded in R3.
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2. The Riemann-Roch theorem and Weierstrass points

Let M, denote a compact Riemann surface of genus g. Topologically,
M, is a torus with g handles.
A meromorphic function on M, is simply a holomorphic map

@ : My — CP! =CU {oo},

where it is customary to assume that ¢(M,) # {cc0}. Let ¢ be a non-
constant meromorphic function on M,. The following equidistribution
property is well-known: each value ¢ € CP! is taken a fixed number,
called the degree of ¢, of times counting multiplicity. In particular, the
total number of zeros is equal to that of poles.

A meromorphic 1-form (also called an Abelian differential) u on M,

is locally given by
n(z)dz,

where z is a local coordinate and 5(2) is a meromorphic function. Let
. ¢ be a meromorphic function on M. Then the total differential dy is
a meromorphic 1-form. Locally

dp = ¢'(2)dz.

Let ¢+ be a meromorphic 1-form on M|, given locally by n(z)dz. Then
the residue of u at a point p € M, is defined to be

Resppu = Respn.

To see that the residue is well-defined just observe that

where < is a small path around p of index 1.

PROPOSITION 3. Let y be a meromorphic 1-form on M,. Then the
total residue must vanish, i.e.,

Z Respu = 0.

PEM
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Proof. Triangulate M, so that each singularity of p lies in the inte-
rior of a triangle. Let A,;,--- , Ay be the triangles in this trianglulation.

Then ;
ZReSP”=§7;Z[1'“)

where #; is the boundary of A;. Since each edge appears exactly twice
with opposite signs the integral vanishes.

A divisor D on M, is a finite formal sum

D= Zaipi, a; € Z\{0}, p; € M,.

If @; > 0 for every i, then D is called an integral divisor and we write
D > 0. The set of all divisors on M,, denoted by Div(M,), forms
an Abelian group under addition: it is isomorphic to the free Abelian
group on the points of M,.

There is a group homomorphism

deg : Div(M,) — Z, deg D = E a;.
By way of notation we put
Ker(deg) = Div’(M,).

Let ¢ be a not identically zero meromorphic function on M,. It is
convenient to use the sheaf notation and write

@ € HY(M,, M*),

where M* denotes the sheaf of germs of not identically zero meromor-
phic functions on M,. The divisor of ¢, denoted by (), is

(0) =) aipi— Y_bjgj,

where the p;’s are the zeros (p; with multiplicity ;) and the g,’s are
the poles (¢; with multiplicity ;) of ¢. We also write

(‘P)o = Zaipi, (‘P)oo = ijQj-
By the equidistribution property we then have
(¢) € DivP(M,).
A divisor is called a principal divisor if it is () for some ¢ € H°(M,, M*).
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REMARK. The set of principal divisors is exactly Div®(M,) if and
only if the genus is zero, i.e., M, is biholomorphic to CP! = CU {co}.

Let 1 # 0 be a meromorphic 1-form on M,. Take a (finite) open
cover (U,) of M, and write

plu, = na(2)dz.

The divisor of x, denoted by (i), is defined to be the divisor D such
that

Dly, = (7)-
Define the order of p at p € M, to be

ord,p = ordpy,

where p = ndz locally. A divisor is called a canonical divisor if it is of
the form (p) for some meromorphic 1-form . 4

PROPOSITION 4. Let ¢ € H'(M,;, M*). Then
deg(dp) =29 — 2.

In fact, the degree of an arbitrary canonical divisor on My is 2g — 2.

To prove Proposition 4 we first need to establish the
Riemann-Hurwitz Formula. Consider a nonconstant holomor-
phic map
f:M, - M,.

Let m denote the degree of f, i.e., every value g € My, is assumed m
times taking into account multiplicity. We know that about any point
p € My, there is the local normal form

f(z)=2", neZ".

The number n — 1 is called the branch number at p, and is denoted by

bs(p). Let
Br=Y bs(p)
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be the total branching number of f. We then have

Proof. Let S = {f(p) € My, : bg(p) > 0}. S is a finite set and we
can triangulate M,, so that every point of S occurs as a vertex. Put

F; = the number of triangles,

E; = the number of edges,

V, = the number of vertices
of this triangulation. Lifting this triangulation to M,, via f we obtain
a triangulation of M,, with F; = mF,;, Ey = mE;, V; = mV, — B.

Now
2-29;=F, - E; +V,

and the result follows.

Proof of Proposition 4. Near a pole p € M, of ¢ we have the Laurant
series expansion

w(z)=crz ¥+ - Feo+crz+-(c_x #£0).
Thus
do(2) = (—ke_pz ¥ 1+ e 1272 4+ ¢1 + 22 + - -+ )dz.
Near a nonpole ¢ € M, we have the Taylor series expansion
P(2) = Caz™ + cap12™ 4 -+ (cn £ 0),

and
dp(z) = (nepz™ " + -+ )dz.

It follows that

deg(dp) = > by(q) — Y (k(p) + 1),
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where p runs over all poles with multiplicity k(p) and ¢ runs over all
branch points with branch number n —1 = b,(¢) with the proviso that
¢ is not a pole. Now

degp =m = Z k(p) = the total number of poles,

and
B=Y b,(q)+) (k(p)-1).

The Riemann-Hurwitz formula applied to ¢ now gives
20¢g—1)=-2m+ B

=-2> k() + Y by(g) + > (k(p)— 1)
= by(g) =) _(k(p) — 1) = deg(dw).

For D € Div(M,) we put
L(D) = {p € H(M,, M") : (¢) + D > 0} U {0}.

For some a;,b; € Z*, p;,q; € M, distinct points we can write

D= Ea,-p,- - Z quj.

We then see that ¢ € L(D)\{0} if and only if ¢ is holomorphic outside
Up; and
ordy; ¢ > bj; ordy, p > —a;.

The following properties concerning L(D) are easily verified:
a) L(D) is a complex vector space;
b) L(D) =0if deg D < 0;
c) L(0) = constant functions = C.

PROPOSITION 5. Let D > 0 be an integral divisor on M,. Then

dim L(D) < degD +1.
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Proof. Write D =) a;p;, a; > 0, the p;’s distinct. (If D = 0, then
dim L(D) = 1.) Suppose ¢ € L(D). Then about each p; we have the
Laurant expansion

p= Z cikz:c,

k=—a;

where 2; is a local coordinate about p;. Map
& : L(D) — CiED) | s (cit), —a; < k < -1
This map is linear with

Ker(®) = {constant functions}.

In fact we have the famous
Riemann-Roch Theorem. For any divisor D € Div(M,)

dim (D) = degD — g + 1 +dim L(Z — D),

where Z is any canonical divisor.
For a very readable proof of the Riemann-Roch theorem we refer
the reader to [Ke] pp.291-293.

DEFINITION. Let p € M, be an arbitrary point. A positive integer
m is called a gap at p if there does not exist a meromorphic function
¢ on M, with
(#P)oo = mp.

The point p is called a Weierstrass point if the set of gaps at p is not
{1a21 tt 1g}

EXAMPLES.
a) Consider CP! = C U {oo}. If p € C, then put

1
(p(Z) = ‘(—;:?);, oo — 0.
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If p = oo, then we put ¢(z) = 2™. Either way (¢)oo = mp, and there
are no gaps anywhere.

b) Consider a complex torus M = C/A, and p € M be arbitrary.
Then there does not exist a meromorphic function ¢ with (¢)e = p:
if there were such a ¢, then ¢ would give a homeomorphism between
M and CP'. So 1is a gap at p. Now by the Riemann-Roch theorem

dim L(mp) = m, m > 2.
Consequently, there exists a meromorphic function in L(mp)\L((m —

1)p), and m is not a gap value. So at an arbitrary point of a complex
torus the set of gaps is {1}, and there are no Weierstrass points.

PROPOSITION 6. Let p € M, be arbitrary. Then there are exactly
g gaps {my,--- ,my} at p with

m1=1<~--<mg$2g——1.

Proof. We first show that there are no gaps > 2g. The precedirg
examples take care of the cases ¢ = 0,1. We assume that ¢ > 2. For
D with deg D > 2¢g — 1 we have L(Z — D) = 0, where Z is a canonical
divisor. It follows that

dim L(Z — mp) = dim L(Z — (m — 1)p) = 0.
On the other hand

dim I(Z — mp) = (29 — 2 —m) + 1 — g + dim L(mp),
dmIL(Z—-(m—-1p)=(29—2-m+1)+1—g+dimL((m — 1)p).

Therefore
dim L(mp) — dim L((m — 1)p) =1, m > 2g,
and there are no gaps > 2¢ at p. We now show that for any m > 1,

dim L(mp) — dim L((m — 1)p) =0 or 1.
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Suppose that dim L{mp) —dim L((m — 1)p) # 0. Given a meromorphic
function ¢ in L(mp) we have the Laurant series expansion

e(z)=a_mz"™+ - +a_1z7 +ag+--,
where 2 is a local coordinate centered at p. Note that
a_m # 0if and only if ¢ € L(mp)\L((m — 1)p).
Recall the linear map
®:L(mp) > €™, ¢+ (acmy-+ ,a-1).
Suppose 1,92 € L(mp)\L((m — 1)p). Then we can find c;, ¢; such

that
®(cyp1 + c2p2) = (0,---),

ie., c1p1 + c2p2 € L((m — 1)p). It follows that one of the ¢;’s is in the
span of the other, and consequently

dim L(mp) = dim L((m — 1)p) = 1.
We have shown that a positive integer m is a gap at p if and only if
dim L(mp) — dim L((m — 1)p) = 0;
m is not a gap at p if and only if
dim L(mp) = dim L((m — 1)p) = 1.
Now for any point p we have
dim L(0) = 1, dim L((2g — 1)p) = g, dim L(2gp) = g + 1.

The rest follows.
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PROPOSITION 7. Let W denote the number of Weierstrass points
on M. Then

a)2g+2<W < (g-1)g(g+1);

b) W = 2¢g + 2 if and only if at every Weierstrass point the gaps are
gjven by {1’37 toT 729 - 1};

c) W = (g~ 1)g9(g + 1) if and only if at every Weierstrass point the
gaps are given by {1,2,--- ,¢g— 1,9+ 1}.

For a proof of Proposition 7 see [FK] pp.85-86.

Recall that a function element (or a power series) determines upon
analytic continuation a multivalued holomorphic function on C. Let
€1, ,¢29+2 (g = 2) be distinct points in C. Consider the Riemann
surface M of the multivalued function

w(z) = /II(z ~ ¢;), 00— 00.

We think of w as a multivalued function C U {c0o} — CU {oo}. The
Riemann surface M is a two-sheeted cover of C U {oo} branched over
C1,-+ ,C2942. Note that w is a single-valued holomorphic function
M — CU {oo}, i.e., w is a meromorphic function on M. Moreover,
the degree of w is 2; the Weierstrass points of M are precisely at
€1y ,C2g942-

Compact Riemann surfaces of genus at least 2 arising in the above
manner are known as hyperelliptic surfaces. More precisely, a compact
Riemann surface of genus g > 2 is said to be hyperelliptic if there exists
a meromorphic function of degree 2 on it. It is not difficult to show that
every Riemann surface of genus 2 is hyperelliptic. A generic compact
Riemann surface of genus at least 3 is not hyperelliptic, however.

Let M, be a Riemann surface of genus at least 2, and also let W
denote the number of Weierstrass points on it. If W = 2¢ + 2, then at
a Weierstrass point p, 2 is a nongap. Thus there exists a meromorphic
function ¢ whose polar divisor is given by 2p. In particular, the degree
of ¢ is 2, showing that M, is hyperelliptic. In fact, it can be shown
that M, is hyperelliptic if and only if the number of Weierstrass points
is 2g + 2.

3. Complete minimal surfaces of finite total curvature
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Let f : M — R3 be a conformal minimal immersion from a Riemann
surface, and also let ®; : M — CP? be its Gauss map. We say that
the Gauss map is algebraic if

a) M is biholomorphic to a compact Riemann surface M, punctured
at a finite number of points {p;,--- ,pr};

b) ®; extends to a holomorphic map & : M, — CP2.

Suppose ®; is algebraic. Then the image ®(M,) is an algebraic
curve: ®(M,) can be realized as the zero locus of a complex homoge-
neous polynomial in 3 variables. The degree of &5 can be defined as
the degree of a polynomial defining ®(M,). The following result is a
variant of so called the Wirtinger theorem from Algebraic Geometry,
and a proof can be found in [Y1] pp. 24-25.

PROPOSITION 8. Let 74 denote the total curvature of f, i.e.,

szf K dA,
M

where K < 0 is the Gaussian curvature and dA is the area element of
the induced metric. Then

—75 = 27 deg(®y).
In particular, the total curvature is an integral multiple of 2x.

A Riemannian manifold (N, ds% ) is said to be complete if it is a
complete metric space. It is a well-known result that N is complete if
and only if every geodesic can be extended for arbitrary large values
of the arclength parameter.

A minimal surface f : M — R? is said to be complete if it is complete
with respect to the induced metric. We have the following fundamental
result.

The Chern-Osserman Theorem [CO)]. Suppose f : M — R? is
a complete minimal surface. Then the total curvature is finite if and
only if the Gauss map is algebraic.

Let f : M — R3 be a conformal minimal immersion, and suppose
that the Gauss map is algebraic. An end of the minimal surface f is,
by definition, f(A;), where A; is a sufficiently small punctured disc
in M centered at a puncture p;. Note that any path approaching the
puncture p; has to have an infinite arclength.
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PROPOSITION 9. Let f : M — R3? be a complete conformal minimal
immersion of finite total curvature. Also let r denote the number of
ends or punctures, and g the genus of the underlying compact Riemann

surface. Then
T <4n(l—g—r).

Proof. Identify M with M,\{p1,---,p,} and note that each {* =

%gdz gives a meromorphic 1-form on M,. Let m; denote the maximum
order of the poles of ((/) at p;. Picking suitable constants (c') the
meromorphic 1-form

-y

has a pole of order exactly m; at each p;, 1 < j < r. Since (¢) is a
canonical divisor on M, we have

2g — 2 = deg(¢)o — deg(()co-

But deg(()o is just the number of zeros of ( counted according to
multiplicity, and

deg(¢)o =) m;+(29—2) 229 —2+2r,

since each m; > 2. (We leave the verification of this as an exercise to
the reader.) But

—7¢ = 2m. (the number of zeros of ()

since the number of zeros of ( is also the number of intersections be-
tween the algebraic curve ®(M,) and the hyperplane {(2*) : ) c'z* =
0}.

Jorge and Meeks [JM] showed that the inequality of Proposition 9
must in fact be an equality for a complete embedded minimal surface.

PROPOSITION 10 (OSSERMAN). Let f : M — R3® be a complete
conformal minimal immersion of finite total curvature. Consider the
meromorphic Gauss map

<p=7ro<1>}L:M—>CU{oo}.
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If ¢ misses more than 3 points, then f(M) is a plane.

Proof. 1dentify M with M,\{p1,--- ,p,}. We have {p, ¢}, the Weier-
strass pair of f. The meromorphic Gauss map ¢ extends to M, giving
a holomorphic map

$: M, = CP, ly=¢.

Applying a rotation to f(M) if necessary we may (and do) assume:

a) support(@)oo N {p1, - ,Pr} = §;
b) (¢)eo consists only of simple poles.
Put

m = degy, B = the total branching number of ¢.
Applying the Riemann-Hurwitz formula to ¢ we obtain
g=-m+1-B/2 or B=2(g+m—1).
We now look at the differential p and see how it extends to all of M,.

¢ has double zeros at the poles of ¢ and no other zeros. Near p;, one
of the punctures, we have

(1 + |p]?)? = |z|§"‘-‘ + higher order terms

with 2 < m; < oo, where z is a local coordinate centered at p;. Thus
¢ extends to a meromorphic 1-form ji on M, with a pole of order m;
at each p; (and no other poles). So

Support(ﬂ)oo - {plv e 7pr}3 ordpi =my; Z 2’
support(ft)eo N support(p)eo = 0.

The degree of the divisor of p, (p), is 29 — 2 since () i1s a canonical
divisor. Hence

2g-—2:2m—-imi.

=1
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Since m; > 2 we must have

(*) g—1+d<m.
Suppose ¢ misses the points g;,-- ,qx of CP!. Then

¢ '({q,---»ax}) T {pry--- 5 pr )

Each ¢; has m preimages counting multiplicity. So

kmgi:(1+n,-)=r+2n,-,

=1

where 1 + n; (n; > 0) is the multiplicity of ¢ at p;. Now ) n; is the
sum of branching numbers at {p;,---,p,}, hence it does not exceed
the total branching number B. It follows that

() km<r+B=r+2(g+m-—1).
Adding the inequalities in (*) and () and rewriting we obtain
1-¢g<(B-k)m.
The inequality in (*) says that r—m <1—g. Sor—m < (3—k)m, or
r<{(4—k)m.

But since M is not compact r > 1, hence k < 4.

It is not known whether there exists a complete conformal minimal
immersion M — R3 of finite total curvature whose meromorphic Gauss
map misses exactly 3 points.

REMARK. In 1988 Fujimoto [F] proved that the meromorphic Gauss
map of any complete minimal surface in R?, whether with finite total
curvature or not, can not omit more than 4 points. Since it is not hard
to construct a complete minimal surface whose meromorphic Gauss
map misses 4 or more points Fujimoto’s bound is sharp. In 1989 Os-
serman and Mo [MOQ] gave the following refinement of Fujimoto’s result:



Complete minimal surfaces and punctured compact Riemann surfaces 329

the meromorphic Gauss map of a nonplanar complete minimal surface
in R? of infinite total curvature takes on every value infinitely often,
with the possible exception of 4 points. The following question seems
to be still open: Let f : M — R2 be a nonplanar complete minimal sur-
face with infinite total curvature. Then does the meromorphic Gauss
map of f take on every value of its image infinitely often?

We now state the
Immersion Problem. Given r € Z* and a compact Riemann
surface M, find all complete conformal minimal immersions of finite

total curvature
fiM\Y —R
with |} | =r.

Klotz and Sario [KS] proved that there exists a complete minimal
surface in R? of finite total curvature of every genus. Hoffman and
Meeks [HM2] later constructed a complete minimal surface in R?® with
finite total curvature of every genus with 3 punctures that is actually
embedded.

A major step toward solving the immersion problem was taken by
Gackstatter and Kunert [GK].

THEOREM A (GACKSTATTER-KUNERT). Any compact Riemann
surface of genus g can be immersed as a complete minimal surface
with finite total curvature in R® with at most 4g + 1 punctures.

Later the author [Y2] proved the following result.

THEOREM B (YANG). Given any nonconstant meromorphic func-
tion Fy on a compact Riemann surface My of genus g > 0 there exists
another meromorphic function F; such that {dF,,F,} is the Weier-
strass pair defining a complete conformal minimal immersion of finite
total curvature into R® defined on M, punctured at the supports of
the polar divisors of F} and F,.

Since there are always an abundant supply of meromorphic functions
on a Riemann surface Theorem B implies that any compact Riemann
surface can be immersed in R® as a complete minimal surface with
finite total curvature with finitely many punctures. Indeed in [Y2] the
author using Theorem B recoved the Gackstatter-Kunert theorem and
proved the following result.
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THEOREM C (YANG). Any hyperelliptic Riemann surface can be
immersed in R? as a complete minimal surface with finite total curva-
ture with at most 3¢ + 4 punctures.

We now give a theorem improving the results in Theorems A-C.

THEOREM D [Y3]. Let M, be any compact Riemann surface of
genus g > 0. Then there exists at least a one-parameter family of
nonisometric complete conformal minimal immersions of finite total

curvature
M\Y - R,

where )’ is a finite set. For g = 1, we can have Y, with |Y_| < 5. For
g > 2 and M, hyperelliptic, we can have Y, with |Y_| < 3¢g + 2. For
g > 2 and M, arbitrary, we can have Y, with |) | < 4g.

Proof. Let M; be a compact Riemann surface of genus g > 0, and
also let F; be any nonconstant meromorphic function on M. For some
b; € Z* and distinct points p; € M, we have

(Fi)oo = Z b;p;.

Put
d="_b; = deg(Fi)co-

Consider the meromorphic 1-form dFy. We have
(@F1)oo = Y (b + L)pi.
For some a; € Z* and distinct points ¢; € M, we have
(dFi)o =) ajg;.
=1

Since

(dFy1) = (dF1)o — (dF1)eo

is a canonical divisor we must have

deg(dFy) =29 -2
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so that
Za_,—=(2g—-2)+n+d.

Introduce a divisor D € Div(M,) by

D=)ajqg; -En:cmi =D*-D~,

i=1 i=1

where the c¢;’s are some positive integers satisfying the conditions

c; .>_b.'+1;2ci =3g—-2+n+d.
The first condition means that

D™ > (dF)eo,
and the second condition means that
deg D = —g.
Consider the complex vector space
L(~D) = {F € H(M,, M") : (F) 2 D} U {0}.

So a not identically zero meromorphic function F is a member of
L(—D) if and only if it has zeros of order at least a; at ¢; and poles of
order at most ¢; at p; (or no poles). Now deg(dFy) = 2g —2 > 0 and
since (dF})oo > 0 we must have

support(dFy)e # 0.

Consequently nonzero constant functions can not be in L(—D). By the
Riemann-Roch theorem

dim L(—D) = deg(—D) — g + 1 + dim L((dF} ) + D)

So we can (and do) choose a nonconstant meromorphic function G €
L(—D). (We may replace G by a nonzero complex multiple, and obtain
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a one-parameter family of noncongruent minimal surfaces in R3. We
will not exploit this fact in the present article, however.) We put

m I n
(Go =D &g+ Y dmsrtm+t; (Goo = Y &ipi
k=1

j=1 =1
with
¢ < ¢, a; > a;;

Z&j +Z&m+k = ZE,'.
The two inequalities mean that G € L(—D), and the equality comes

from the fact that (G) is a principal divisor. Define a nonconstant
meromorphic function F; on M, by

A
B =) c/G,

a=1
where A =2(n+m+1—1)+ (4g + 1), and (cq) is a nonzero vector in
C” to be chosen suitably later. Consider meromorphic 1-forms FdF}
and FZdF) on M,. Observe that
{qm+1, st 7Qm+l} C support(ngFl)oo C {q17 sy dm4 Pl 7p11}7
{a1, - ,gm+1} Csupport(F5dF1)oo C {q1, " ,qm+1;P1," "+ ,Pn}-

We claim that we can choose (¢o) € C*\{0} such that the forms F>dF;
and FZdF; have neither residues nor periods on M,. Put

R; o = Res, dF, /G,
Rj o = Resy;dFy [G*,
Rp,o = Res,,,,dF1/G*,

where Res denotes the residue. We then have

RCSP'. FodF = Z caRi,ay

Resqungl = Z CaRj,a’
Resqm+k deFl = Z CaRk,a-
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So the meromorphic 1-form F>dF; on M, has no residues if and only
if the ¢, ’s satisfy the following system of linear equations:

(I > caRia=0; Y caRja=0; > caRro=0.

The system has n + m + [ equations. We know that on a compact Rie-
mann surface the total residue of any meromorphic 1-form must vanish.
It follows that if any n + m + [ — 1 residues of F,dF; were to vanish,
then the remaining residue would have to vanish also. Consequently,
we may (and do) throw out an equation from the linear system (I).
Let (e1,--- ,e24) be 1-cycles on M, representing a canonical homology
basis. Put

Pa,a=/ dFi/G*, 1<a<2g, 1<a<A

So the e,-period of F,dF; is given by the sum ) ¢o Pa. It follows
that the differential F5dF} has no periods on M, if and only if

(IT) > caPan=0, 1<a<2g.

This system is linear in (¢4) and contains at most 2g independent
equations. We now consider the differential FZdF). Put

Ri20 = Resp dFy[/G?*, 1<a <A

Similarly define R; 24, and R 2,. Thus the residue of F2dF, at p; is
given by

A

Ri(ca) = Z ctRiza + 2 2 cacpRiatp-
a=1 1<a<B<A

We also let Rj(c,) and Ri(cq) denote the residues of FfdF at ¢, and
gm+k respectively. Observe that Ri(cs), Rj(ca), and Ri(cs) are all
homogeneous polynomials in (c,) of degree 2. The zero locus in c>
of one of these polynomials is a (possibly degenerate) homogeneous
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quadric. Now the meromorphic differential F;dF; has no residues if
and only if the ¢, ’s satisfy

(I11) Ri(ca) = 0; Rj(ca) =0; Ri(co)=0.

Again using the vanishing of the total residue we can throw out one of
the equations from (III). Put

Pooo = / dF1/G?*, Py oairp = / dFy /G*YP,

where 1 < a,8 < A, 1 < a <2g. So the e,-period of F2dF) is given by

Pyca)=) iPaza+2 Y. cacsPaosp.
1<a<f<A

The form F7dF; has no periods on M, if and only if
(V) Pylca)=0, 1<a<2yg.

Each Py(cq) is a homogenous polynomial in (¢qo) of degree 2. The
number of equations in the system (I-IV) is 2(n+m+1—1)+4g = A—1.
We can now establish our earlier claim: First note that the solution set
of an equation in (I-IV) is either a hyperplane or a (possibly degenerate)
homogenous quadric in C*. At any rate it corresponds to an algebraic
hypersurface in P*~1. But we know that A — 1 algebraic hypersurfaces
in P*~! must intersect: This follows at once from the codimension
formula: for any two algebraic varieties V;, Vo C PV

codim(V; N V;) < codim V; + codim V3.

In fact we see that the set of c,’s solving (I-IV) is itself a homogeneous
affine variety. In particular, if a vector (¢, ) solves the system, then so
does any complex multiple of it. We let

Sol c C*

denote this solution variety. Fixc = (¢,) € Sol\{0}. We define holo-
morphic 1-forms (1,¢2,¢% on

M = M,\{support(F})eo Usupport(F2)oo } = Mg\{pi; ¢j; qm+k}
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by the formulae

¢! = %(1 — F2)dF,,

¢ = %(1 + F})dFy,
¢ = RRdF,.

The fact that the differentials F5dF; and F?dF; have no residues
and no periods on M, guarantees that the holomorphic differentials
¢,¢?,¢® have no real periods on M. Consequently the formula

f=(ff)=2Rs/'(cf), 1<e<s,

defines a conformal minimal immersion M — R3. At a puncture

P € {pi; 45 qm+i} = M\M

each (¢ has at worst a pole, hence the Gauss map of f extends holo-
morphically to all of M, (cf. [Y1] p.29). It is not hard to see that any
path approaching one of the punctures has an infinite arclength. Take
a p;, for example. If we let z be a holomorphic coordinate centered at
p; and write

¢ = n"dz,

then
h(z) = 22 In|? = C/}2>™ + higher order terms, m > 2

since dF; has a pole of order b; + 1 > 2 at p;. The arclength of any
path approaching p; must be infinite since the induced metric on M is
given by

f*dsy = h(2)dz - dz

near the puncture. Thus the induced metric is complete. We have
shown that each

¢ = (ca) € Sol\{0}



336 Kichoon Yang

gives rise to a complete conformal minimal immersion of finite total
curvature
fe:M =M\ —R,

where Y denotes the finite puncture set. Let ¢ = (é,) € Sol\{0} be
given by

€a = PCa,
where p is any nonzero complex number. Let {dF} = dF}, F3} be the
Weierstrass pair coming from the choice ¢ € Sol\{0}. We see that

F'g = sz
Let 5
h(z)dz - dz

denote a local expression for the induced metric of f = fz. We compute
that _
b=l 1+ B,

where dF; = ndz locally. On the other hand, the induced metric of f,
is given by h(z)dz - dz with

h=nl*(1+ |F2]*)*.

It follows that the surfaces f, and f; are not isometric for |p| # 1 show-
ing that there exists at least a one-parameter family of nonisometric
complete conformal minimal immersions of finite total curvature

M) - R

Let r denote the number of punctures,ie., r =|)_|. Sor =n+m+1,
where

n = the number of distinct poles of Fj,
m = the number of distinct zeros of dFj.

Moreover,
m+1<(3¢—-2)+d+n,
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where d = deg(F})oo. This is so since

m+l_<_Z&,~ SZC.- =3¢g—-2+d+n.
Thus

r<(3¢g—2)+d+2n.
Suppose M, is a complex torus, i.e., ¢ = 1. Then for any point p € M,
we can find a meromorphic function F on M, such that
(F)oo = 2p.
Set F;] = F. Then d =2 and n = 1. Hence
r < 5.
Suppose M, is hyperelliptic, and let p € M, be a Weierstrass point.
We then know that there exists a meromorphic function F on M, with
(Floo = 2p.
Letting Fy = F we see that d =2, n =1, and

r < 3¢9+ 2.
We now suppose that M, is an arbitrary Riemann surface of genus
g > 2. On M, there are at least 2¢g + 2 Weierstrass points. Let p € M,
be a Weierstrass point. This means that the gap sequence at p is not
given by {1,2,---,¢}. Since there are exactly g gaps it follows that
we must have a nogap d < g. (The worst possible gap sequence at p is
{1,2,--- ,g — 1,9 + 1}.) But this means that there is a meromorphic
function F on M, with

(Foo = dp.
Letting F)} = F we have n = 1, and

r<(3¢g—2)+(d+2n) < (39 —2)+(9+2) <4g.

The stage 1s set for the following

CONJECTURE.

a) There exists a compact Riemann surface M, that can not be
conformally minimally and completely immersed into R® with finite
total curvature with less than 4¢ punctures;

b) there exists a hyperelliptic Riemann surface M that can not be
so immersed in R® with less than 3g + 2 punctures.
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