Isometries of a Subalgebra of C(1)[0, 1]

  • Lee, Yang-Hi (Department of Mathematics Education Kongju National Teachers College)
  • Received : 1991.06.03
  • Published : 1991.06.30

Abstract

By $C^{(1)}$[0, 1] we denote the Banach algebra of complex valued continuously differentiable functions on [0, 1] with norm given by $${\parallel}f{\parallel}=\sup_{x{\in}[0,1]}({\mid}f(x){\mid}+{\mid}f^{\prime}(x){\mid})\text{ for }f{\in}C^{(1)}$$. By A we denote the sub algebra of $C^{(1)}$ defined by $$A=\{f{\in}C^{(1)}:f(0)=f(1)\text{ and }f^{\prime}(0)=f^{\prime}(1)\}$$. By an isometry of A we mean a norm-preserving linear map of A onto itself. The purpose of this article is to describe the isometries of A. More precisely, we show tht any isometry of A is induced by a point map of the interval [0, 1] onto itself.

Keywords