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Locally Convex Topologies of Vector Spaces?)
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1. Introduction

In the Hilbert space £5, a linear operator T can be represented by an infinite matrix
A = (a;;) using a basis (e. g. the standard basis) of £;. The known connexions between the
continuity of T' and the entries a;; of A are very scarce [7].

In studying the connexion one usually considers the matrix A in an abstract vector space.
However it will be more convenient to consider A in a topological vector space rather than
in an abstract vector space.

Thus we are usually led to topologize the vector space of all infinite matrices with entries
from a fixed field (e. g. the complex number field)

Let £ be the set of all sequences

T = (:2:1,3:2,:;:3,...)

of complex terms z; with componentwise addition and componentwise scalar (complex)
multiplication. Evidently £ forms a vector space and toplogizing the vector space of infinite
matrices is evidently the same as topologizing the vector space £. Hence topologizing the
vector space £ is considered in § 3.

Locally convex topologies in a vector space are intimately connected with absorbing,
balanced, convex subsets of the vector space [Theorem 3]. Hence some absorbing and non-
absorbing subsets of vector spaces are considered in § 4.

Every vector space X has at least one admissible topology, namely the indiscrete topology
(X,). Also it is evident that this indiscrete topology is the samllest admissible topology
for the vector space X. Let

...{4},{B},...,{C},...

be all admissible topologies of a vector space X. Then the familly ¥ = {00 = Us0c, where
each O is a finite intersection A N B N --- N C of open sets A, B, ..., C taken from the
topologies {A},{B},...,{C}} defines a topology of X. That is, the finite intersections
ANBN---NC constitute a basis for the topology . Furthermore 1 is admissible to the
vector space structure of X. For the continuity of the operation z + y, let 0 be an arbitrary
neighborhood of x + y. Then there is a basis element AN BN ---NC containing z + y and
which is inside 0. Since {A} is an admissible topology for X, there are open subsets A’ and
A" of the topology {A} such that A’ and A” contain z and y respectively, and A’ + A” C A.

Likewise we can find B’, B”;...;C’, C" from the topologies {B},. .., {C} such that B’, ...,
C’ contain z, B”,...,C" contain y,and B'+ B" C B,...,C'+C" c C.

Then AANB'N---NC'+A4"NB"Nn---NC"CANBN---NnC.

That is, the operation + is continuous. The continuity of scalar multiplication Az can
also be proved in a similar fashion.

Thus 1 is the largest admissible topology for the vector space X. Hence we obtain the
following Theorem.

1) This research was supported by Kyung Hee University Rerearch Grant in 1990.
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Theorem 1. For an arbitrary vector space there always are a unique smallest admissible
topology and a unique largest admissible topology.

The indiscrete topology (X, ¢) for a vector space X is clearly a locally convex topology.
Therefore it is the unique smallest admissible locally convex topology for X.

Let ..., {4}, {B},...,{C},...

be all the admissible locally convex topologies of a vector space X. Then finite intersec-
tions ANBN---NC of open sets A, B,...,C taken from the topologies {A}, {B},...,{C}
constitute a basis of a topology ¥. That 1 is admissible to the vector space structure of
X can be shown exactly as in Theorem 1. Furthermore it is easy to see that 1 is locally
convex. Therefore 3 is the largest admissible locally convex topology for the vector space
X. And we obtain the following theorem.

Theorem 2. For an arbitrary vector space there always are a unique smallest admissible
locally convez topology and a unique largest admissible locally convex topology.

According to [2] this largest admissible locally convex topology can be described as follows.

Theorem 3. Let X be an absiract vector space, and I' the collection of all absorbing,
balanced, conver subsets of X. Then the largest (finest) admissible locally convez topology
of X can be oblained by letting I' be the local base of neighborhoods of 0.

Let X be an arbitrary abstract vector space and let {h)|A € A} be a Hame] basis of X.
Let ax be an arbitrary positive number, ay > 0, for each A € A. Then ||z|| = 3=, aajta| for
z =3, tyhy € X defines a norm in z. Therefore we obtain the following theorem.

Theorem 4. Every abstract vector space can be made a normed vector space.

2. The finest locally convex topology of the vector space C”
Theorem 5. The finest admissible locally convex topology of the vector space C” is the
unique? (up to topological isomorphism) norm topology

flzll= le1] + |22l + -+ + |24

where z = (z1,22,...,%,)

Proof: Let ® be the finest locally convex topology, and let i be the (uniform) topology
induced by ||z||. Since ¥ also is a locally convex topology it is obvious that ¢ C ®. So it is
sufficient to show that ® C . To this end it also is sufficient to show that the identity map

I:(C",¢) — (C™,®)

is continuous.
So what we have to show is that for any sequence ) € C" (i = 1,2,3,...) with
lz(")] — 0 and ®-nbhd 0 of the origin we can find an N such that (") (N+1) € 0.

2)A. F. Taylor and D. C. Lay Introduction to Functional Analysis p.62
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Now by the local convexity of ® we can find a balanced convex neighborhood v of 0 such
that v is contained in O. Since v is a & neighborhood of 0, it is an absorbing subset in
C", and hence there is a positive number r such that rex € O (k = 1,2,...,n), where ¢;
are standard basis of the vector space C™. Then by the absolute convexity (balanced and
convex) of v the absolute convex hull of req,res, ..., re, is contained in v. That is

W={z€eCtz==me1+ -+ zpen,|z1|+ -+ |za| <r}CU
Since W is a 4-neighborhood of 0, and since ||2(*)|| — 0 we can find an N such that
2™ N+ eWcCcvCO

proving the theorem.

Note: We know that admissible Ti-topology of C” is unique [8]. Therefore if we know
beforehand that the finest admissible locally convex topology of C” is a Ti-topology, then
it must coincide with the norm topology which is the unique admissible T}-topology of C™.

3. Topologies of the vector space /£

£ stands for the set of sequences 2 = (2,,22,23,...) of complex entries z; with compo-
nentwise addition and componentwise scalar multiplication.

For each n, pn(z) = |z,] defines a semi-norm for the vector space £. Hence the familly of
all pn{x) defines a locally convex topology @ in the vector space £, and it is obvious that
this topology is a Hausdorff one. Moreover it can be shown that the locally convex topology
® indeed is a metric one.

Theorem 6. Let

d(z,y) = 22—n|$n_yn|/{1+lzn"yn|} (1)

n=1
for z = (z,) and y = (yn) of £.
Then d(z,y) is a metric of £, and defines the semi-norms topology ®

Proof: that d(z,y) is a metric of £ is easy to see. An arbitrary neighborhood of 0 in the
topology @ of £ can be written

U={zel| |z <e1,|za] <E2,...,|Zn] <En}
={z el | 27|/ + |&]) < ps,i=1,2,...,n}
where p; = 27%; /(1 + ¢;)

Let p = min(py, p2,...,pn). Then V = {z € £]| d(z,0) < P} C U and V is a neighborhood
of 0 in the metric topology induced by d(z, y).

Conversely an arbitrary neighborhood of 0 in the metric topology of £ can be written

V={ze€t|d0)<e}
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Find an N such that )72y, 27% < /2, Then
U={zel]|27%z)/(1+|=]) <e/(2N),i=12,...,n}CV
and U is a neighborhood of 0 in the topology ®.

Note: This topology ® is not normable

Proof: The proof will be complete by [3] if we show that an arbitrary neighborhood V(0)
of O in the topology ® is not bounded. Now we can find a neighborhood

W = {(zn) € £] d((24),0) < €}.

which is contained in V(0). Find number p with 277 < ¢. And let ¢, = (0,...,0,1,0,...)
whose only non-zero entry is the p-th entry 1. Let {a,} be a null sequence of non-zero
scalars, 1. e. o, # 0 and a,, — 0. For example take a,, to be 1/n.

Then z, = (1/an)e, € W because

1 1
d(z,,0) = 2'”];"-]/(1 + ’E:D <27P <.

That is, z, e W (n = 1,2,...), an — 0, but a,z, = e, does not teﬁd to 0. Therefore by
[4] W is not bounded. So V(0) is not bounded.

The vector space £ can also be considered as the direct product
o0
t=1]Ya (2)
n=1

where each Y,, is the vector space C of complex numbers. Moreover each Y,, becomes a
topological vector space C with the mertic

dn(Zn,yn) = 27" 2p = Yn|/(1 + |20 = yn]) for z,,9y, €Y, 3)

And the cartesian product topology of (2) when each Y, is topologized by the mel;.ric 3)
can be defined by the metric

P2, 3) = SUp dn(2n, yn) for 2 = (20) € £,y = (yn) €€ [1] (4)

And it is easy to see that® this metric (4) is equivalent to the metric d(z,y) of (1). Hence
we obtain the following theorem.

Theorem 6. The semi-norms topology ® of £ = [[Yn (each Y;, = C) is the cartesian
product topology of []1 Y, when to each Yy, is given the topology of the complez number plane.

4. Absorbing and non-absorbing subsets in vector spaces
Let ri(k = 1,2,...) be arbitrary positive numbers, and let
V(ri,re,ra,...) = V(ry,re,73,...; X)
={z € X|z=(zi),|ee| <ri for k=1,2,3,...}

be an (generalized) open box in the subspace X of £. Then the following lemma holds.

(5)

3) Since p(z,y) < d(z,y) every d-neighborhood of y, {z|d(z,y) < £}, is contained in the p-neighborhood of
¥, {z|p(z,y) < £}. Conversely let d-neighborhood of y, {z]d(z,y) < €}, is given. Then there is an n(e) such
that 571;1- + 2—,,’_“- +--< 5. Let§= 2—"‘(;5, then {z{p(z,y) < 6} C {z|d(z,y) < e}.
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Lemma 1. Let1<p<oo,r 2132132 - —0, and Y o, 7 < 0. Then the open
boz V = V(ry,ra,ra,...;£) is not absorbing in the space {p.

Proof: Let £ = (£,) be such that
¢ = { (3)Prn, whenn=2",m=1,23,...
"=

0, otherwise
Then
el = 3 {n/2y/eral = Y3
< Z{Tpm—lﬂ + 7'}2)'"-1+2 t+ot e} = ;
Hence € € 4.

However no s§ € V(ry,ra,73,...;£,) for s > 0, because s¢€ € V implies that for all n = 2™
(m=1,2,3,...)
s(g—)l/”rﬂ < Ty

and this is obviously impossible.

Lemma 2. Letl < p < oo, andry > v > 13 > -+ — 0. Then the open box V =
V(r1,r2,73,...;4y) is not absorbing in the sapce £,

Proof: From the assumption we can find an increasing sequence of positive integers
n<nyg<ng<... such that
rho+rh,+ <00

Then
DY =4y(n1,ng,...) = {z €|z = (zx), 21 = 0 when k # ny,ny,... } =4,

That is, £,(ny,n2,...) and £, are topologically isomorphic.
If V(ry,72,...;£,) were absorbing in the space £, then

{z €Yz = (k). 12n,] < 7ny|2ns] < 7y, - }

would be absorbing in the space Y contradicting the lemma 1.

Theorem 7. Let 1 <p<ooandry >0k =1,2,3,...). Ifinf(ry,re,73,...) = 0 then
the open box V =V (ry,7a,73,...;4,) is not absorbing in the space ¢,

Proof: Put n; = 1. Then there is at least one n4 such that

1
37m < Tp,,ny < na. (6)

Let ny be the least one satisfying (6). Next there is at least one ngz such that

1
37 < Tpy, N2 < N3. )
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Let n3 be the least one satisfying (7).
Similarly we can choose ny < ns < .... And it is obvious that

Toy D Tpy > Ty > — 0,
Also it is obvious that
Y =4,(m,ny,...) ={z € fplz = (2x),2x = 0 when k # ny,ny,... } = £,
If V were absorbing in the space £, then
{z €Yz = (z1),|zn,| < PnyyEna]l < 7ny ...}

would be absorbing in the space Y contradicting the lemma 2.
Let Cy, C and £, be the sub-vector spaces of £ such that

Co = {z € f|z = (=1), zx converges to o}
C = {z € f}z = (z1), z: converges }
Lo, = {z € f|z = (z4), z; are bounded}

Then £, CCo C C Cée CL.
And in the following corollary let

V(ry,re, 73,3 X)

be the open box (5) with X = Cy,C,f, and £ respectively. Then we obtain the following
corollary. '

Corollary 1. Let r, > 0 (k = 1,2,3,5. If inf(ry,ro,r3,...) = 0 then the open boz
V =V(ry,ra,rs,...; X) is not absorbing in the vector spaces X = Cyp,C, € and L.

Proof: If V were absorbing in the space Co, C, £y or £, then V would be absorbing in
the subspace £, contradicting the theorem 7

Theorem 8. Let r > 0. Then the open boz

V=V(rr.. . fe)

ts absorbing in the vector space 1.

Proof: Let £ = (§k) € £, then

€] <M fork=1,2,3,...

Now we can find a number s such that sM < r. Then s € V.

Corollary 2. Let r > 0. Then V = V(r,r,r,...;X) is absorbing in the vector spaces
X =14£,Co and C.

Proof: proof is immediate because £,,Cy and C are sub-spaces of 1,,.

Theorem 9. Letr, >0 (k =1,2,3,...). Then th;z open box V = V(ry,rq,73,...;€) is
not absorbing in the vector space 1.

Proof: Let § = (r1,2rs,3r3,...,nr,,...). Then £ € £. And p€ € V implies

lpnrp| <7 forn=1,2,3,....

This is possible only when p = 0.
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