Locally Convex Topologies of Vector Spaces1)

Kap Byung Yoon, Kyung Rin Chun

Kyung Hee University, Seoul, 130-701, Korea

1. Introduction

In the Hilbert space ℓ_2 , a linear operator T can be represented by an infinite matrix $A = (a_{ij})$ using a basis (e. g. the standard basis) of ℓ_2 . The known connexions between the continuity of T and the entries a_{ij} of A are very scarce [7].

In studying the connexion one usually considers the matrix A in an abstract vector space. However it will be more convenient to consider A in a topological vector space rather than in an abstract vector space.

Thus we are usually 1ed to topologize the vector space of all infinite matrices with entries from a fixed field (e. g. the complex number field)

Let ℓ be the set of all sequences

$$x=(x_1,x_2,x_3,\dots)$$

of complex terms x_k with componentwise addition and componentwise scalar (complex) multiplication. Evidently ℓ forms a vector space and toplogizing the vector space of infinite matrices is evidently the same as topologizing the vector space ℓ . Hence topologizing the vector space ℓ is considered in § 3.

Locally convex topologies in a vector space are intimately connected with absorbing, balanced, convex subsets of the vector space [Theorem 3]. Hence some absorbing and non-absorbing subsets of vector spaces are considered in § 4.

Every vector space X has at least one admissible topology, namely the indiscrete topology (X, φ) . Also it is evident that this indiscrete topology is the samllest admissible topology for the vector space X. Let

$$...\{A\},\{B\},...,\{C\},...$$

be all admissible topologies of a vector space X. Then the familly $\psi = \{0|0 = \bigcup_{\alpha} 0\alpha$, where each 0_{α} is a finite intersection $A \cap B \cap \cdots \cap C$ of open sets A, B, \ldots, C taken from the topologies $\{A\}, \{B\}, \ldots, \{C\}\}$ defines a topology of X. That is, the finite intersections $A \cap B \cap \cdots \cap C$ constitute a basis for the topology ψ . Furthermore ψ is admissible to the vector space structure of X. For the continuity of the operation x + y, let 0 be an arbitrary neighborhood of x + y. Then there is a basis element $A \cap B \cap \cdots \cap C$ containing x + y and which is inside 0. Since $\{A\}$ is an admissible topology for X, there are open subsets A' and A'' of the topology $\{A\}$ such that A' and A'' contain x and y respectively, and $A' + A'' \subset A$.

Likewise we can find $B', B''; \ldots; C', C''$ from the topologies $\{B\}, \ldots, \{C\}$ such that B', \ldots, C' contain x, B'', \ldots, C'' contain y, and $B' + B'' \subset B, \ldots, C' + C'' \subset C$.

Then
$$A' \cap B' \cap \cdots \cap C' + A'' \cap B'' \cap \cdots \cap C'' \subset A \cap B \cap \cdots \cap C$$
.

That is, the operation + is continuous. The continuity of scalar multiplication λx can also be proved in a similar fashion.

Thus ψ is the largest admissible topology for the vector space X. Hence we obtain the following Theorem.

¹⁾ This research was supported by Kyung Hee University Rerearch Grant in 1990.

Theorem 1. For an arbitrary vector space there always are a unique smallest admissible topology and a unique largest admissible topology.

The indiscrete topology (X, φ) for a vector space X is clearly a locally convex topology. Therefore it is the unique smallest admissible locally convex topology for X.

Let ...,
$$\{A\}$$
, $\{B\}$, ..., $\{C\}$, ...

be all the admissible locally convex topologies of a vector space X. Then finite intersections $A \cap B \cap \cdots \cap C$ of open sets A, B, \ldots, C taken from the topologies $\{A\}, \{B\}, \ldots, \{C\}$ constitute a basis of a topology ψ . That ψ is admissible to the vector space structure of X can be shown exactly as in Theorem 1. Furthermore it is easy to see that ψ is locally convex. Therefore ψ is the largest admissible locally convex topology for the vector space X. And we obtain the following theorem.

Theorem 2. For an arbitrary vector space there always are a unique smallest admissible locally convex topology and a unique largest admissible locally convex topology.

According to [2] this largest admissible locally convex topology can be described as follows.

Theorem 3. Let X be an abstract vector space, and Γ the collection of all absorbing, balanced, convex subsets of X. Then the largest (finest) admissible locally convex topology of X can be obtained by letting Γ be the local base of neighborhoods of θ .

Let X be an arbitrary abstract vector space and let $\{h_{\lambda} | \lambda \in \Lambda\}$ be a Hamel basis of X. Let α_{λ} be an arbitrary positive number, $\alpha_{\lambda} > 0$, for each $\lambda \in \Lambda$. Then $||x|| = \sum_{\lambda} \alpha_{\lambda} |t_{\lambda}|$ for $x = \sum_{\lambda} t_{\lambda} h_{\lambda} \in X$ defines a norm in x. Therefore we obtain the following theorem.

Theorem 4. Every abstract vector space can be made a normed vector space.

2. The finest locally convex topology of the vector space \mathbb{C}^n

Theorem 5. The finest admissible locally convex topology of the vector space \mathbb{C}^n is the unique² (up to topological isomorphism) norm topology

$$||x|| = |x_1| + |x_2| + \cdots + |x_n|$$

where
$$x = (x_1, x_2, \ldots, x_n)$$

Proof: Let Φ be the finest locally convex topology, and let ψ be the (uniform) topology induced by ||x||. Since ψ also is a locally convex topology it is obvious that $\psi \subset \Phi$. So it is sufficient to show that $\Phi \subset \psi$. To this end it also is sufficient to show that the identity map

$$I: (\mathbf{C}^n, \psi) \to (\mathbf{C}^n, \Phi)$$

is continuous.

So what we have to show is that for any sequence $x^{(i)} \in \mathbb{C}^n$ (i = 1, 2, 3, ...) with $||x^{(i)}|| \to 0$ and Φ -nbhd 0 of the origin we can find an N such that $x^{(N)}, x^{(N+1)}, ..., \in O$.

²⁾A. F. Taylor and D. C. Lay Introduction to Functional Analysis p.62

Now by the local convexity of Φ we can find a balanced convex neighborhood v of 0 such that v is contained in O. Since v is a Φ neighborhood of 0, it is an absorbing subset in \mathbb{C}^n , and hence there is a positive number r such that $re_k \in O$ (k = 1, 2, ..., n), where e_k are standard basis of the vector space \mathbb{C}^n . Then by the absolute convexity (balanced and convex) of v the absolute convex hull of $re_1, re_2, ..., re_n$ is contained in v. That is

$$W = \{x \in \mathbb{C}^n | x = x_1 e_1 + \dots + x_n e_n, |x_1| + \dots + |x_n| \le r\} \subset U$$

Since W is a ψ -neighborhood of 0, and since $||x^{(i)}|| \to 0$ we can find an N such that

$$x^{(N)}, x^{(N+1)}, \ldots \in W \subset v \subset Q$$

proving the theorem.

Note: We know that admissible T_1 -topology of \mathbb{C}^n is unique [5]. Therefore if we know beforehand that the finest admissible locally convex topology of \mathbb{C}^n is a T_1 -topology, then it must coincide with the norm topology which is the unique admissible T_1 -topology of \mathbb{C}^n .

3. Topologies of the vector space ℓ

 ℓ stands for the set of sequences $x = (x_1, x_2, x_3, \dots)$ of complex entries x_k with componentwise addition and componentwise scalar multiplication.

For each n, $p_n(x) = |x_n|$ defines a semi-norm for the vector space ℓ . Hence the family of all $p_n(x)$ defines a locally convex topology Φ in the vector space ℓ , and it is obvious that this topology is a Hausdorff one. Moreover it can be shown that the locally convex topology Φ indeed is a metric one.

Theorem 6. Let

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n| / \{1 + |x_n - y_n|\}$$
 (1)

for $x = (x_n)$ and $y = (y_n)$ of ℓ .

Then d(x,y) is a metric of ℓ , and defines the semi-norms topology Φ

Proof: that d(x, y) is a metric of ℓ is easy to see. An arbitrary neighborhood of 0 in the topology Φ of ℓ can be written

$$U = \{x \in \ell \mid |x_1| < \varepsilon_1, |x_2| < \varepsilon_2, \dots, |x_n| < \varepsilon_n\}$$

= \{x \in \ell \| 2^{-i} |x_i| / (1 + |x_i|) < \rho_i, i = 1, 2, \dots, n\}

where $\rho_i = 2^{-i} \varepsilon_i / (1 + \varepsilon_i)$

Let $\rho = \min(\rho_1, \rho_2, \dots, \rho_n)$. Then $V = \{x \in \ell \mid d(x, 0) < P\} \subset U$ and V is a neighborhood of 0 in the metric topology induced by d(x, y).

Conversely an arbitrary neighborhood of 0 in the metric topology of ℓ can be written

$$V = \{x \in \ell \mid d(x,0) < \varepsilon\}$$

Find an N such that $\sum_{k=N+1}^{\infty} 2^{-k} < \varepsilon/2$, Then

$$U = \{x \in \ell \mid 2^{-i}|x_i|/(1+|x_i|) < \varepsilon/(2N), i = 1, 2, \dots, n\} \subset V$$

and U is a neighborhood of 0 in the topology Φ .

Note: This topology Φ is not normable

Proof: The proof will be complete by [3] if we show that an arbitrary neighborhood V(0) of O in the topology Φ is not bounded. Now we can find a neighborhood

$$W = \{(x_n) \in \ell \mid d((x_n), 0) < \varepsilon\}.$$

which is contained in V(0). Find number p with $2^{-p} < \varepsilon$. And let $e_p = (0, \dots, 0, 1, 0, \dots)$ whose only non-zero entry is the p-th entry 1. Let $\{\alpha_n\}$ be a null sequence of non-zero scalars, i. e. $\alpha_n \neq 0$ and $\alpha_n \to 0$. For example take α_n to be 1/n.

Then $x_n = (1/\alpha_n)e_p \in W$ because

$$d(x_n,0) = 2^{-p} \left| \frac{1}{\alpha_n} \right| / (1 + \left| \frac{1}{\alpha_n} \right|) < 2^{-p} < \varepsilon.$$

That is, $x_n \in W$ (n = 1, 2, ...), $\alpha_n \to 0$, but $\alpha_n x_n = e_p$ does not tend to 0. Therefore by [4] W is not bounded. So V(0) is not bounded.

The vector space ℓ can also be considered as the direct product

$$\ell = \prod_{n=1}^{\infty} Y_n \tag{2}$$

where each Y_n is the vector space C of complex numbers. Moreover each Y_n becomes a topological vector space C with the mertic

$$d_n(x_n, y_n) = 2^{-n} |x_n - y_n| / (1 + |x_n - y_n|) \text{ for } x_n, y_n \in Y_n$$
(3)

And the cartesian product topology of (2) when each Y_n is topologized by the metric (3) can be defined by the metric

$$\rho(x,y) = \sup d_n(x_n, y_n) \text{ for } x = (x_n) \in \ell, y = (y_n) \in \ell \quad [1]$$

And it is easy to see that³⁾ this metric (4) is equivalent to the metric d(x, y) of (1). Hence we obtain the following theorem.

Theorem 6. The semi-norms topology Φ of $\ell = \prod Y_n$ (each $Y_n = \mathbb{C}$) is the cartesian product topology of $\prod Y_n$ when to each Y_n is given the topology of the complex number plane.

4. Absorbing and non-absorbing subsets in vector spaces

Let $r_k(k=1,2,...)$ be arbitrary positive numbers, and let

$$V(r_1, r_2, r_3, \dots) = V(r_1, r_2, r_3, \dots; X)$$

$$= \{ x \in X | x = (x_k), |x_k| < r_k \text{ for } k = 1, 2, 3, \dots \}$$
(5)

be an (generalized) open box in the subspace X of ℓ . Then the following lemma holds.

³⁾ Since $\rho(x,y) \le d(x,y)$ every d-neighborhood of y, $\{x|d(x,y) < \varepsilon\}$, is contained in the ρ -neighborhood of y, $\{x|\rho(x,y) < \varepsilon\}$. Conversely let d-neighborhood of y, $\{x|d(x,y) < \varepsilon\}$, is given. Then there is an $n(\varepsilon)$ such that $\frac{1}{2^{n}+1} + \frac{1}{2^{n}+2} + \cdots < \frac{\varepsilon}{2}$. Let $\delta = \frac{\varepsilon}{2^{n}(\varepsilon)}$, then $\{x|\rho(x,y) < \delta\} \subset \{x|d(x,y) < \varepsilon\}$.

Lemma 1. Let $1 \le p < \infty$, $r_1 \ge r_2 \ge r_3 \ge \cdots \to 0$, and $\sum_{k=1}^{\infty} r_k^p < \infty$. Then the open box $V = V(r_1, r_2, r_3, \ldots; \ell_p)$ is not absorbing in the space ℓ_p .

Proof: Let $\xi = (\xi_n)$ be such that

$$\xi_n = \begin{cases} \left(\frac{n}{2}\right)^{1/p} r_n, & \text{when } n = 2^m, m = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

Then

$$\begin{aligned} \|\xi\|_p^p &= \sum_{n=2^m} \{(n/2)^{1/p} r_n\}^p = \sum_n \frac{n}{2} r_m^p \\ &\leq \sum_n \{r_{2^{m-1}+1}^p + r_{2^{m-1}+2}^p + \dots + r_{2^m}^p\} = \sum_k r_k^p < \infty \end{aligned}$$

Hence $\xi \in \ell_p$.

However no $s\xi \in V(r_1, r_2, r_3, \dots; \ell_p)$ for s > 0, because $s\xi \in V$ implies that for all $n = 2^m$ $(m = 1, 2, 3, \dots)$

$$s(\frac{n}{2})^{1/p}r_n < r_n.$$

and this is obviously impossible.

Lemma 2. Let $1 \le p < \infty$, and $r_1 \ge r_2 \ge r_3 \ge \cdots \to 0$. Then the open box $V = V(r_1, r_2, r_3, \ldots; \ell_p)$ is not absorbing in the sapee ℓ_p

Proof: From the assumption we can find an increasing sequence of positive integers $n_1 < n_2 < n_3 < \dots$ such that

$$r_{n_1}^p + r_{n_2}^p + \dots < \infty$$

Then

$$\ell_p \supset Y = \ell_p(n_1, n_2, \dots) = \{x \in \ell_p | x = (x_k), x_k = 0 \text{ when } k \neq n_1, n_2, \dots\} \cong \ell_p$$

That is, $\ell_p(n_1, n_2, ...)$ and ℓ_p are topologically isomorphic.

If $V(r_1, r_2, \ldots; \ell_p)$ were absorbing in the space ℓ_p , then

$${x \in Y | x = (x_k), |x_{n_1}| < r_{n_1} |x_{n_2}| < r_{n_2}, \dots}$$

would be absorbing in the space Y contradicting the lemma 1.

Theorem 7. Let $1 \leq p < \infty$ and $r_k > 0 (k = 1, 2, 3, ...)$. If $\inf(r_1, r_2, r_3, ...) = 0$ then the open box $V = V(r_1, r_2, r_3, ...; \ell_p)$ is not absorbing in the space ℓ_p

Proof: Put $n_1 = 1$. Then there is at least one n_2 such that

$$\frac{1}{2}r_{n_1} < r_{n_2}, n_1 < n_2. \tag{6}$$

Let n_2 be the least one satisfying (6). Next there is at least one n_3 such that

$$\frac{1}{2}r_{n_2} < r_{n_3}, n_2 < n_3. \tag{7}$$

Let n_3 be the least one satisfying (7).

Similarly we can choose $n_4 < n_5 < \dots$ And it is obvious that

$$r_{n_1} > r_{n_2} > r_{n_3} > \cdots \rightarrow 0.$$

Also it is obvious that

$$Y = \ell_p(n_1, n_2, \dots) = \{x \in \ell_p | x = (x_k), x_k = 0 \text{ when } k \neq n_1, n_2, \dots\} \cong \ell_p.$$

If V were absorbing in the space ℓ_p , then

$${x \in Y | x = (x_k), |x_{n_1}| < r_{n_1}, |x_{n_2}| < r_{n_2} \dots}$$

would be absorbing in the space Y contradicting the lemma 2.

Let C_0 , C and ℓ_{∞} be the sub-vector spaces of ℓ such that

$$C_0 = \{x \in \ell | x = (x_k), x_k \text{ converges to o} \}$$

$$C = \{x \in \ell | x = (x_k), x_k \text{ converges } \}$$

$$\ell_{\infty} = \{x \in \ell | x = (x_k), x_k \text{ are bounded}\}$$

Then $\ell_p \subset C_0 \subset C \subset \ell_\infty \subset \ell$.

And in the following corollary let

$$V(r_1,r_2,r_3,\ldots;X)$$

be the open box (5) with $X = C_0, C, \ell_{\infty}$ and ℓ respectively. Then we obtain the following corollary.

Corollary 1. Let $r_k > 0$ $(k = 1, 2, 3, \dot)$. If $\inf(r_1, r_2, r_3, \dots) = 0$ then the open box $V = V(r_1, r_2, r_3, \dots; X)$ is not absorbing in the vector spaces $X = C_0, C, \ell_{\infty}$ and ℓ .

Proof: If V were absorbing in the space C_0, C, ℓ_{∞} or ℓ , then V would be absorbing in the subspace ℓ_p contradicting the theorem 7

Theorem 8. Let r > 0. Then the open box

$$V = V(r, r, r, \ldots; \ell_{\infty})$$

is absorbing in the vector space 1_{∞} .

Proof: Let $\xi = (\xi_k) \in \ell_{\infty}$, then

$$|\xi_k| < M$$
 for $k = 1, 2, 3, ...$

Now we can find a number s such that sM < r. Then $s\xi \in V$.

Corollary 2. Let r > 0. Then V = V(r, r, r, ...; X) is absorbing in the vector spaces $X = \ell_p, C_0$ and C.

Proof: proof is immediate because ℓ_p , C_0 and C are sub-spaces of 1_{∞} .

Theorem 9. Let $r_k > 0$ (k = 1, 2, 3, ...). Then the open box $V = V(r_1, r_2, r_3, ...; \ell)$ is not absorbing in the vector space 1.

Proof: Let $\xi = (r_1, 2r_2, 3r_3, \dots, nr_n, \dots)$. Then $\xi \in \ell$. And $\rho \xi \in V$ implies

$$|\rho n r_n| < r_n$$
 for $n = 1, 2, 3, \ldots$

This is possible only when $\rho = 0$.

References

- 1. J. Dugundji, "Topology," Allyn and Bacon, Inc., Boston, 1966, p. 190.
- J. Horváth, "Topological Vector Spaces and Distribution, Vol. 1," Addison-Wesley. Pub. Co., Reading, Mass., 1966, p. 87.
- 3. ibid.p.110.
- 4. W. Rudin, "Functional Analysis," McGraw-Hill, Inc., New York, 1973, p. 22.
- 5. A. E. Taylor and D. C. Lay, "Introduction to Functional Analysis," p. 97.
- 6. K. R. Chun and K. Yoon, Linear operator represented by an infinite matrix in the Hilbert space ℓ_2 , J. Korea Soc. Math. Edu. 27, no. 1 (1988), 29-35.
- K. Yoon, Linear Operator represented by an infinite matrix in the Hilbert Space \(\ell_2(II)\), Theses Collection Kyung Hee Univ. 18 (1989), 273-280.