## Nonparametric Estimators for Percentile Regression Functions

### Eun-Sook Jee

Kwangwoon University, Seoul, 139-701, Korea

ABSTRACT. We consider the regression model H = h(x) + E, where h is an unknown smooth regression function and E is the random error with unknown distribution F. In this context we present and examine the asymptotic behavior of some nonparametric estimators for the percentile regression functions  $\xi_p(x) = h(x) + \xi_p$ , where  $0 and <math>\xi_p = \inf\{x : F(x) \ge p\}$ 

## 1. Introduction

Consider the regression model

$$Y_{ij} = h(x_i) + E_{ij}$$
  $(j = 1, ..., m_i \text{ and } i = 1, ..., n),$ 

where h(x) is an unknown function defined on the colsed interval [0,1] (or any closed interval), and  $E_{ij}$  are independent and identically distributed random variables from a population with unknown distribution function F(x). Under this type of regression models, investigators are frequently interested in estimates of different percentilies  $\xi_p(x) = h(x) + \xi_p$  of the distribution of Y for a given design point x, where  $0 , and <math>\xi_p = \inf\{x : F(x) \ge p\}$  is the (100p)th percentile of the distribution function F. For example, assuming that the function h(x) is a linear function  $\alpha + \beta x$  and E is normally distributed with mean 0 and variance  $\sigma^2$ , the problem of obtaining point estimators and confidence bands for  $\xi_p(x) = \alpha + \beta x + \xi_p$  was considered by Easterling (1969), Turner and Bowden (1977), Griffiths and Willcox (1978), among others. Here  $\xi_p = \sigma Z_p$ , and  $Z_p$  is the (100p)th percentile of the standard normal distribution. In this paper, we are concerned with the problem of estimating the general percentile regression function  $\xi_p(x)$  based on the random sample  $\{(x_i, Y_{ij}), j = 1, \ldots, m_i, i = 1, \ldots, n\}$  when the functions h and F are both unknown.

Since design points are selected from [0,1], we may without loss of generality assume that  $0 = x_0 \le x_1 \le x_2 < \cdots < x_n \le 1$ . To define nonparametric estimators of  $\xi_p(x)$ ,  $0 , our first step is to estimate the distribution function <math>F_x(y) = F(y - h(x))$  of Y for a given vaule of x by using

$$F_{x,n}(y) = \widehat{G}_1(y) \int_{-\infty}^x a_n^{-1} K\left[\frac{x-z}{a_n}\right] dz + \sum_{i=2}^{n-1} \widehat{G}_i(y) \int_{x_{i-1}}^{x_i} a_n^{-1} K\left[\frac{x-z}{a_n}\right] dz + \widehat{G}_n(y) \int_{x_{n-1}}^{\infty} a_n^{-1} K\left[\frac{x-z}{a_n}\right] dz$$

$$(1.1)$$

see Stone (1977). Here  $\widehat{G}_i(y) = m_i^{-1} \sum_{j=1}^{m_i} I(Y_{ij} \leq y)$  (i = 1, ..., n),  $I(\cdot)$  is the indicator function, the weight function K(x) is a probability density function vanishing outside some closed interval [-L, L] and bandwidth parameter  $a_n$  is a constant tending to 0 as  $n \to \infty$ . In view of (1.1) we note that  $F_{x,n}(y)$  is a right continuous function and increases by jumps

48 E. S. Jee

only at points  $Y_{ij}$ . In addition, if we let  $x_n \to 1$  as  $n \to \infty$ , then for each  $x \in (0,1)$ ,  $F_{x,n}(y)$  can be expressed as

$$F_{x,n}(y) = \sum_{i=1}^{n} \{ \widehat{G}_i(y) \int_{x_{i-1}}^{x_i} a_n^{-1} K\left[ \frac{x-z}{a_n} \right] dz \}$$
 (1.2)

for all sufficiently large n. In the sequel, we shall always assume that  $x_n \to 1$ ,  $n \to \infty$ , and hence we can utilize the simple expression (1.2) for  $F_{x,n}(y)$ .

As we will see in Section 2, the random function  $F_{x,n}(y)$  is a good estimator of  $F_x(y)$ . Thus to estimate  $\xi_p(x)$ , 0 , we simply consider the intuitive estimator

$$\xi_{p,n}(x) = \inf\{y : F_{x,n}(y) \ge p\}$$

In this paper, some stochastic properties of  $\xi_{p,n}(x)$  will be investigated. Specifically, we show that  $\xi_{p,n}(x)$  is a consistent estimator of the unknown percentile regression function  $\xi_p(x)$ . Moreover,  $\xi_{p,n}(x)$  is shown to be asymptotically normal under very mild conditions.

In regression analysis, the estimates  $\xi_{p,n}(x)$  may furnish very good descriptive statistics. Besides, this estimation procedure has application to discrimination on percentiles in regression; see Easterling (1969) and Steinhorst and Bowden (1971). Moreover, the median regression function estimate  $\xi_{1/2,n}(x)$  provides a good estimate for the regression function h, when the distribution function F has median  $\xi_{1/2} = 0$ . Other competitive estimators were considered by Benedetti (1977), and Cheng and Lin (1981 a, b).

# 2. Strong Consistency of $\xi_{p,n}(x)$

In the following, we provide a set of sufficient conditions showing that  $\xi_{p,n}(x)$  is indeed a consistent estimator of  $\xi_p(x)$ . Define  $\delta_n = \max_{1 \le i \le n} (x_i - x_{i-1})$ .  $N_n = \min_{1 \le i \le n} m_i (\ge 1)$  and  $||k||_{\infty} = \sup |K(x)|$ . Throughout this paper, we also let c denote a generic constant which may not be the same at each appearance.

Theorem 2.1. Let  $0 and <math>x \in (0,1)$ . Assume that  $F, h \in \text{Lip}(1)$ ,  $||k||_{\infty} < \infty$ ,  $\delta_n \to \infty$ ,  $n \to \infty$ , and  $\beta_n N_n^{-1} \delta_n a_n^{-1} \log^2 n = 0(1)$ ,  $n \to \infty$ , where  $\beta_n \to \infty$ , is any sequence of positive constants. If  $\xi_p$  is the unique solution y of  $F(y^{-1}) \leq P \leq F(y)$  then with probability one,

$$\xi_{p,n}(x) \to \xi_p(x), \qquad n \to \infty$$

**Proof:** For each  $\alpha > 0$  and  $x \in (0, 1)$ ,

$$F_x(\xi_p(x) - \alpha) = F(\xi_p - \alpha)$$

by the uniqueness condition of the theorem. Now using (1.2) and a moment inequality of the exponential form (see, e.g., Lamperti (1966), pp.43-44), we obtain

$$P\{|F_{x,n}(y) - EF_{x,n}(y)| > \alpha\} \le cn^{-\alpha\beta_n^{1/2}}, \text{ for each } \alpha > 0$$

Further,  $|EF_{x,n}(y) - F_x(y)| \to 0$ ,  $n \to \infty$ . Thus, in view of (2.1), we may conclude that

$$P\{F_{x,m}(\xi_p(x) - \alpha)$$

Consequently, for each  $\alpha > 0$ ,

$$P\{\xi_p(x) - \alpha < \xi_{p,m}(x) < \xi_p(x) + \alpha, \text{ all } m \ge n\} \to 1, \quad n \to \infty$$

This finishes the proof.

### Remarks:

(i) If we apply the same approach used in Cheng and Lin (1981a, Theorem 3), then for each constant c.

$$\sup_{X \in [a,b]} |F_{x,n}(\xi_p(x)+c) - F_x(\xi_p(x)+c)| \stackrel{\text{W.P.1}}{\longrightarrow} 0, n \to \infty$$

where 0 < a < b < 1. According to the above proof, this result will then imply that

$$\operatorname{Sup}_{X \in [a,b]} |\xi_{p,n}(x) - \xi_p(x)| \xrightarrow{W.P.1} 0, n \to \infty$$

- (ii) We have the following observations (with regularity conditions omitted):
- (1)  $\xi_{p,n}(x) \xi_p(x) = \frac{F_x(\xi_{p,n}(x)) p}{f_x F_x^{-1}(\theta_{p,n}(x))}$ , where  $F_x(\xi_{p,n}(x)) \wedge p < \theta_{p,n}(x) < F_x(\xi_{p,n}(x)) \vee p$ , (2)  $F_x(\xi_{p,n}(x)) = \inf\{y : F_{x,n}(F_x^{-1}(y)) \ge p\}$

Morevoer, using a theorem by Singh (1975), we have

$$\gamma_n \cdot \operatorname{Sup}_{y \in R} |F_{x,n}(y) - F_x(y)| \xrightarrow{W.P.1} 0, n \to \infty$$
 (2.2)

with  $\gamma_n \to \infty$ .  $n \to \infty$ . Thus under some appropriate conditions in conjunction with (1), (2) and results in Vervaat (1972), (2.2) forces

$$\gamma_n \cdot \operatorname{Sup}_{0$$

(iii) In Theorem 2.1,  $\beta_n$  is any sequence of positive constants tending to  $\infty$  as  $n \to \infty$ . Thus if  $m_i = 1$ , i = 1, ..., n, and  $\delta_n = n^{-1}$ , we may let  $\beta_n = \log \log n$  and then choose  $a_n = cn^{-1}\log^2 n\log\log n$ , where c is any fixed positive constant.

#### References

- 1. Benedetti, J. O., On the nonparametric estimation of regression function, J. Roy. Statist. Soc. B 39 (1977), 248-253.
- 2. Cheng, K. F. and Lin, P. E., Nonparametric estimation of a regression function, Z. Wahrscheinlichkeitstheorie Verw. Geb. 57 (1981a), 223-233.
- ., Nonparametric estimation of a regression function: limiting distribution, Austral. J. Statist. 23 (1981b), 186-195.
- 4. Easterling, R. G., Discrimination intervals for percentiles in regression, J. Amer. Statist. Assoc. 64 (1969), 1031–1041.
- 5. Griffiths, D. and Willcox, M., Percentile regression: a parametric approach, J. Amer. Statist. Assoc. 73 (1978), 496–398.
- 6. Lamperti, J., "Probability," W. A. Benjamin, New York, 1966.

- 7. Singh, R. S., On the Glivenko-Cantelli theorem for weighted empiricals based on independent random variables, Ann. Probability 3 (1975), 371-374.
- 8. Steinhorst, R. X. and Bowden, D. C., Discrimination and confidence bands on percentiles, J. Amer. Statist. Assoc. 66 (1971), 850-854.
- 9. Stone, C. J., Consistent nonpapametric regression, Ann. Statist. 5 (1977), 595-645.
- Turner, D. L. and Bowden, D. C., Simulataneous confidence bounds empiricals based on independent random variabiles. Ann. for percentile lines in the general linear model, J. Amer. Statist. Assoc. 72 (1977), 886-889.
- 11. Vervaat, W., Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrscheinlichkeitstheorie Verw. Geb. 23 (1972), 245-253.