Journal of the Korea Society of Mathematical Education

VI { Y8R <5 YITE> June 1991: Vol. 30, No.1, 47-50
1991. 6. A30@ 1% 47-50

Nonparametric Estimators for Percentile Regression Functions
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ABSTRACT. We consider the regression model H = h(z) + E, where h is an unknown
smooth regression function ard E is the random error with unknown distribution F. In
this context we present and examine the asymptotic behavior of some nonparametric
estimators for the percentile regression functions p(z) = h(z) + £p, where 0 < p < 1
and & = inf{z : F(z) > p}

1. Introduction

Consider the regression model
Y,;j=h($,')+E,'j (j:l,...,m.-a.ndi:l,...,n),

where h(z) is an unknown function defined on the colsed interval [0, 1] (or any closed inter-
val), and E;; are independent and identically distributed random varialbes from a population
with unknown distribution function F(z). Under this type of regression models, investiga-
tors are frequently interested in estimates of different percentilies &,(z) = h(z) + &, of the
distribution of Y for a given design point z, where 0 < p < 1, and §, = inf{z : F(z) > p}
is the (100p)th percentile of the distribution function F. For example, assuming that
the function h(:c) is a linear function o + Sz and E is normally distributed with mean
0 and variance ¢?, the problem of obtaining point estimators and confidence bands for
&(z) = a4 Bz + €, was considered by Easterling (1969), Turner and Bowden (1977), Grif-
fiths and Willcox (1978), among others. Here &, = 0Z,, and Z, is the (100p)th percnetile
of the standard normal distribution. In this paper, we are concerned with the problem
of estimating the general percentile regression function £,(z) based on the random sample
{(2:,Y:;),7=1,...,m;,i=1,...,n} when the functions h and F are both unknown.

Since design points are selected from [0, 1], we may without loss of generality assume that
0 =29 <23 <22<: <z, <1 To define nonparametric estimators of £,(z), 0 < p < 1,
our first step is to estimate the distribution function Fp(y) = F(y — h(z)) of Y for a given
vaule of z by using
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(1.1)

see Stone (1977). Here G;(y) = m; ! Z Y <) (6= 1,...,n), I(-) is the indicator
function, the weight function K(z) is a probablhty density function vanishing outside some
closed interval [-L, L] and bandwidth parameter a,, is a constant tending to 0 as n — oo.
In view of (1.1) we note that F, ,(y) is a right continuous function and increases by jumps
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only at points ¥;;. In addition, if we let z, — 1 as n — oo, then for each z € (0, 1), Fza(y)
can be expressed as

Ty

Fonl®) = YAG00) [ ot [222] as) (12)
i=1 "

Ti-1

for all sufficiently large n. In the sequel, we shall always assume that z, — 1, n — 00, and
hence we can utilize the simple expression (1.2) for Fz n(y).

As we will see in Section 2, the random function F. ,(y) is a good estimator of Fx(y).
Thus to estimate {,(z), 0 < p < 1, we simply consider the intuitive estimator

Ep,n(z) = inf{y : Fz,n(y) > p}

In this paper, some stochastic properties of &, ,(x) will be investigated. Specifically, we
show that & n(z) is a consistent estimator of the unknown percentile regression function
€p(z). Moreover, & n{(z) is shown to be asymptotically normal under very mild conditions.

In regression analysis, the estimates &, (z) may furnish very good descriptive statistics.
Besides, this estimation procedure has application to discrimination on percentiles in re-
gression; see Easterling (1969) and Steinhorst and Bowden (1971). Moreover, the median
regression function estimate &;/ () provides a good estimate for the regression function
h, when the distribution function F has median &/, = 0. Other competitive estimators
were considered by Benedetti (1977), and Cheng and Lin (1981 a, b).

2. Strong Consistency of &, 1(z)

In the following, we provide a set of sufficient conditions showing that £, ,,(z) is indeed a
consistent estimator of §,(z). Define 6, = maxjci<a(i — 2i~1). Nn = minicicnmi(> 1)
and ||k|lec = sup|K(z)]. Throughout this paper, we also let ¢ denote a generic constant
which may not be the same at each appearance.

Theorem 2.1. Let 0 < p < 1 and z € (0,1). Assume that F,h € Lip(1), ||k}l < 00,
8s — 00, n — 00, and B, N7 6,a;  log? n = 0(1), n — oo, where B, — 0o, is any sequence
of positive constants. If €, is the unigue solution y of F(y™!) < P < F(y) then with
probability one, :

&n(z) = (), n— oo

Proof: For each o > 0 and z € (0,1),

Fo(ép(z) ~ o) = F(& ~ @) < p < F(&p + a) = Fz(§(2) + ), (2.1)

by the uniqueness condition of the theorem. Now using (1.2) and a moment inequality of
the exponential form (see, e.g., Lamperti (1966), pp.43-44), we obtain

P{|Fe n(y) — EFzn(y)] > a} < cn‘“ﬁ;/z, for each a > 0
Further, (EF; n(y) — Fz(y)| — 0, n — co. Thus, in view of {2. 1), we may conclude that

P{Fem(p(z)—a) <p< Fom(&(2)+a), allm>n}—1, n-—oo.
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Consequently, for each e > 0,

P{ép(z) —a <épm(z) <&p(z)+a, alm>n}—1, n—oo

This finishes the proof.

Remarks:

(i) If we apply the same approach used in Cheng and Lin (1981a, Theorem 3), then for
each constant c,

W.P.1
Supxefa) [Fzn(fp(z) + ¢) — Fo(§(z) + )] — 0,n — o0
where 0 < ¢ £ b < 1. According to the above proof, this result will then imply that

Supx oy Epn(z) — &(2)] T2 0,n — o0

(ii) We have the following observations (with regularity conditions omitted):

(1) &pn(z) = &p(2) = %g—%y where Fi(§pn(2)) AP < Op,a(2) < Fe(&,n(2)) Vp,
(2) Fz(épn(z)) = inf{y : Fon(F7 ' (y)) 2 P}
Morevoer, using a theorem by Singh (1975), we have

o - SUDye g |Fen(y) = Fa(y)] 251 0,n — o0 (2:2)

with 7, — c0. n — co. Thus under some appropriate conditions in conjunction with (1),
(2) and results in Vervaat (1972), (2.2) forces

Tn - SuPogp<y [pn(T) ~ &p(2)] 2210,n - o0

(1i1) In Theorem 2.1, 8, is any sequence of positive constants tending to oo as n — co.
Thus if m; = 1,7 =1,...,n, and §, = n~1, we may let 8, = loglogn and then choose
an = cn~log? nlog logn where ¢ is any ﬁxed positive constant.
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