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ABSTRACT. Multiobjective Optimization problem involving set functions is intro-
duced. Then an iterative algorithm for these kinds of problems is suggested and its
optimal process will be proved.

1. Introduction

In [9], Morris gave some examples for optimization problem involving set functions. In
[7], the generalized Fenchel theorem on set functions is formulated and proved. In [12],
Tanaka and Maruyama proved some properties for the multiobjective optimization problem
of set functions. For a domination cone containing the nonnegative orthant, some results
are known by Chou, Hsia and Lee [3]-[6] and by Lee [8].

Let (X,U,m) be a measure space and F : U — RP be a p-dimensional vector valued
set function, G : U — R? be a ¢-dimensional vector valued set function. We wish to find
Q* € U such that F(Q*) is a minimum subject to the constraint G(Q2) < 0.

Problem (T):
MinnngU F(Q)
G(Q)<0

where C is a subset of the o-algebra U that posseses convexity in some sense. Inequalities
between vectors will be clear as we proceed. B

In this paper, we concentrate on the investigation of an algorithm which finds Q* satisfying
the minimality. In section 2, preliminaries concerning optimization with set functions will
be given. And multiobjective programming problem with set functions will be defined.
And some known results will be presented. In section 3, an iterative algorithm concerning
multiobjective optimization with set functions will be introduced and its optimal process
will be proved.

2. Multiobjective optimization with set functions

We first give a definition of inequalities between vectors.
Let K be the closure of a subset K of RP and int(K) be the interior of a subset K of RP.
For two vectors z = (zy,%2,...,2p), ¥ = (¥1,¥2,...,Yp) € AP, and a cone K of RP,

(1) e<g yiff y— z € int(K)

(2) z<gyiffy—z e K- {0}

B)z<yiffy~z€e K

* This paper is supported by the K.O.S.E.F..
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Let the nonnegative orthant be R, = {z € RP|z > 0} and the nonpositive orthant RY =
{z € RP|z < 0}.

If K is the nonnegative orthant, K will be ommited in the inequalities. The inner product
of the vectors z and y will be denoted by

P
<z,y>= inyi~

i=1
For a subset K in R” is positive polar E° is defined by
K°={z* €e R*|<z,2* > >0 for any z € E}.

Lemma 2.1. Let K be a pointed closed conver cone in RP. If 0 # A € K% and z €
int(K), then < A, 2 >> 0.

Definition 2.1: Let K be a cone. A set A is said to be K-convez if A+ K = {a + k|
a € A,k € K} is a convex subset in R?.

In optimization problems, the set of efficient points of a feasible set gives a solution set.

Definition 2.2: A point z* of E is called an efficient pointof E C R? if (E~z*)RE =
{0}, that is, for z* € E, there is no € E such that z < z*.

Another restricted solution concept, proper-efficiency, eliminates efficient points of certain .
types of abnormality.

Definition 2.3: A point z* = (z],23,..., x;) € RP is a properly efficient point of
ECRP

if (p(E + Ry —z*)(RY) = {0}, where p(S) = {az|a > 0,z € S} is the projecting cone
for aset S C RP.

Lemma 2.2 [8). Let E be a R_’;—'convez set of RP. Then z* is a properly efficient point
if and only if there ezists A* € int RY such that

<Ahzt > < <Az >,

forallz € E.

Recently, multiobjective programming with set functions have been studied by Chou,
Hsia, and Lee [3], [4]. The programming problem involves optimal selection of a measurable
subset for a given measure space and set functions on it. The usual convexity theory can
not be applied in this situation because of the pooly structured o-algebra. The concept of a
convex set functions was originally defined by Morris [mo)] and then refined later by others.

For Q € U, xa denotes the charateristic function of Q. In this way, U can be viewed as
a subspace of Lo,. We shall write L, instead of L,(X,U, m), for 0 < p < co.
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Proposition 2.3 [9]. If a measure space (X, U, m) is finite atomless and L, separable,
then for any Q1,29 € U and X € [0,1)], there exists a sequence {['z} C U such that

Xr, = Axa, + (1 = A)xq,, where 2+ denotes the weak* convergence of elements in Lo,

This {T'»} C U is called Morris-sequence associated with (A, Q;, Q).

Throughout this paper, let (X, U, m) be a finite atomless measure space with (X, U, m)
separable. Then, by the above proposition, we could replace convex combinations by a
Morris sequence.

Definition 2.4: [4]. A subfamily C of U is called convez if, given (e, 21,£22) € [0,1]xCx
C and a Morris sequence {I',,, } in U associated with (a,Q;,$,), there exists a subsequence
{Tn,} of {Tn}in C.

A convex set function is now generalized to a convex subfamily C of U.

Definition 2.5: [5]. Let C be a convex subfamily of U and K be a convex cone in RP.
A multi-valued set function H : C — RP is K-convez if, given (e, §2;,92) in [0,1]x Cx C
and any Morris-sequence {I',} in U associated with (e, §;,$5), there exists a subsequence
{Ty,} of {Ts} in C such that

limsup H(T',,, ) < aH(Q;) + (1 — a)H(,),

k—o00

where limsup is taken over each component.

Proposition 2.4 [4]. If C is convez, then C, the w*-closure of C in Ly, is the w™-closed
convez hull of C and U = {f € L,|0 < f < 1}.

Using this ideas now we able to introduce a version of continuity on a convex subfamily C.

Definition 2.6: A vector-valued set function H = (Hy, Hy,...,Hp) : C — RP is called
w*-continuous on C if for each f € C and for each j = 1,2,...,p, {H;(Qm)} converges to

the same limit for all {Q,,} with xa, — f.

Given a cone E of RP and a set function H on convex subfamily C, a restricted result
comparable to that of Proposition 2.2.7 [sa] obtains:

Lemma 2.5 [5]. Let K be a closed conver conein RP. If H : C — RP is a w*-continuos,
K -conver set function, then the closure of H(C) in RP, H(C), is K-convez.

For a p-dimensional function
f=UL2 M), fel(X,Um), i=12,...p
and characteristic function xq € Lo (X, U, m), we denote
< fixa»=(< flixa> < fPxa>,..., < ffxa>),

where < fi,xq >= [, fidm, i=1,...,p, is the inner product of f* and xq.
A pseudometric p on the o-algebra U will be defined by the following way

(21, Q2) = m(AQy), 9,2 €T,
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where Q;AQ, denotes the symmetric difference for 4 and Q.

Definition 2.7: A p-dimensional vector valued set function F : U — RP is said to be
differentiable at Qo if for F = (Fy,...,Fp) with each element set function F; : U — R,
1=1,2,...,p, there exists

fao=(fhy-- fR), fo €L, i=12,...,p,
the derivative at g such that
F(Q) = F(Qo)+ < fa,,Xa = Xa, > +Er(Q, Q)
where Er(Q, Q) = (Er,(Q0,9),. .., EF,(Q0,Q)) and each Er,(Q,Qp)’s are o(p(2, Qo)), i.e.,

lim (Er(Q,Q Q,Q)) =0,
oim _ (Er (% Q0)/p(0,00))
fori=1,...,p.
By [9], the derivative fq is unique.
We assume, in optimization problem (T'), that F,G are w*-continuous and differentiable
at each Q € U.
Let us consider a common regularity condition on the feasible set:

G(f0) < 0,

for some Qp € C. This is only a straightforward generalization of well-known Slater’s
constraint qualification.

Lemma 2.6. Assume Slater’s constraint qualification for the problem (T). Then F(C') is
a convez subset in RP, where the sets C’' = {Q € C|G(Q) < 0} and F(C") = {F(Q)|Q € C'}.

Remark:: Note that the feasible family C’ = {Q € C|G(Q) < 0} is not convex in general
(see Example 3.1 of {5]). However,in the proof of lemma, F(C’) = F(C") is convex by the
fact that C" = {Q € C|G(Q) < 0} is convex under Slater’s constraint qualfication. Since
F is w*-continuous and €’ is w*-compact in Lo, ,we have that F(C') = F(C') is compact,
where F is an extention of F on Lo,

Next we have the Lagrange multiplier theorem for vector-valued programming with set
functions. The set of all p x ¢ matrices is denoted by RP*?. The set {M € RFX!| <
M,R{ >C R} is denoted by L.

Theorem 2.7 [8]. Let Q*be a properly efficient solution to the problem (T'). If there is
Qy € C such that G(Qp) < 0, then there exists M* € L such that
(1) F(2*) e Min{L(Q,M*)|Q2 € C}
(i) < M*,G(*) >= 0,
where L(Q,M) = F(Q)+ < M,G(R2) >, for Q € C and M € RP*1.

Corollary 2.8 [8]. Suppose that Q* is a properly efficient solution to the proplem (T).
If there is a Qo € C such that G(20) < 0, then there exists a vector A* € Ri such that

(i) F(2*) € Min {F(Q)+ < 3, G(Q) > [T € C}
NMin{F(Q)+ < 3*,G() > |Q € C},

and

(ii) € M, G(Q) >=0
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where € A,z > is a vector with each component < A,z >.

3. Iterative Algorithm

The constrained problem (7") can be converted into unconstrained problem using the
correct Lagrange multipliers . Hence we will concentrate on unconstrained optimization
problem. It will be assumed that (X, U, m) is the Lebesque measure space over X C R?,
m(X) < oo and that all set funtions are differentiable.

Definition 3.1: Qg € U is local mimimum in (T) if there exists € > 0 such that for Q
satisfying that p(Q, Q) < ¢,G;(2) < 0,i=1,2,...,¢, it follows that F(Q,) < F(Q).

Definition 3.2: Given a set function f = (f,...,f?) : X — RP,fi € L, j =
1,2...,p, we say that f separates p if

0L fixa—Xa,> foralQeU

or equivalently f <0 a.e. on Qo, f > 0a.e. on Q.

Note that a seprating set satisfies the necessary condition for minimality.

A numerical approximation to an optimal set is to represent it in terms of a finite number
of elementary sets. QOur approach is to partition X into a finite union of disjoint elementary
sets or finite elements as follows :

Let {A2}Y, be a family of disjoint measurable sets with

1=1

N
P(X’UA:l)zo

i=1
and
m(AM=h, i=1,2,..., N
Denote by Uj,a the power set P[{A}}Y,].
An iterative algorithm to find a separating element of U,s will be stated now. This ele-

ment approximately satisfies the necessary condition for the problem (7°). It is an extention
of an algorithm from [9].

Algorithm 3.3:

Tet M >0, Qg € Ups.

(1) & — Q.

(2) For each j =1,2,...,p,

(i) select A; € {AP}Y,, A; CQwith < fi,xa, > > Mh?
or

(ii) select A} € {AMYY,, A; C Q° with < fprA;. > < —Mh?

If neither (i) nor (ii) is satisfiable, then stop.
(3) QNext [Q\ njeK Aj]U[UjeK' A;]
where K = {j] index 1 < j < p for which (i) in step (2) holds}
and K’ = {j|| index 1 < j < p for which (ii) in step (2) holds}
(4) Q — ONext
go to (2)
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Theorem 3.1. Let F = (¥j) : U — RP be differentiable with derivative

fﬂ = (f}l)f(zl:af(’;)

and Er(Q,92) < (M/p)[p(R1, Q)] for all j = 1,2,...,p and Q4,Qz in U. Then the
algorithm (3.3) stops at Q satisfying, Vi =1,--- ,p,
<fLA><MREY, Ae{AM},, AcQ

and
< fl A>>-MR?, Ae{Al}l,, AcCQ°

Remark: The conclusion holds for all A C Uy, since Upn is the o-algebra of disjoint
sets A2

Proof: Assume that at step (2) j is in K. Let us denote A; = [J;cx Aj and A2 =
U]'GKI A",, Then

Fi(Qnext) = F(+ < iy Xayew — X0 > +EF; (Qvext, )
= Fj(D+ < fh, Xanen > = < fhy X0 > +EF;(Qext, )
= F()+ < fl,xa =~ Xa +Xas > = < fh, xa > +Er; (Dext, Q)
= Fj(Q)= < fi,xa, > + < fi xas > +EF;(Qnext, ).

Since A = A; or ¢ and < fh,xa, >< ~Mh? <0,

Fi(Qnext) < F5(2)- < fiiuXAx > 40 + EF; (QNext, )
< Fi(Q)— < fhyxa, > +EF;(Onext, Q)
< F;(Q) — MR? + Mh? = F;(Q).

In the case that at step (2) j € K', similarly we have that

Fj (ext) = F3(Q)+ < fi, xa, > = < fh,xa, > +Er; (Oext, Q)
S FJ(Q)+ < fg]:XAz > -0 + EFj(QNeXt)Q)
< Fi(Q) — Mh? + Mh? = F;(Q).

Thus if the algorithm does not stop at step (2), then F;(Qnex:) decreases at each cycle.
Since N is finite, such a decrease occurs only a finite number of times and the algorithm
stops. At that point, i.e.

<fhA>< MR, Ae{Al},, AcQ

and .
<fuA>2 -MRY, Ae{AMY,, AC@

Therefore, the proof is complete.
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Since algorithm (3.3) solves an approximated version of the problem it is important now
to enquire whether as Uy is given a finer structure. The repeated application of algorithm
(8.3) will produce a sequence whose accumulation points satisfy the necessary conditions

for optimality. To show this we define a sequence of discretization schemes {A? }}-v(h)

;=1 Where
h € H = {hy,h,,...} and the sequence H converges strictly monotonically to zero. Again
define Upn = P[{A"}N(h)] The discretization scheme is required to possess the following

properties :

(1) for each b € H, {A}}NP) is a family of disjoint measurable sets satisfying m(A}) = h

i=1,...,N(h) and p(X,UNM AF) =0,

(2) given € U and € > 0, there exists N such that n > N implies there exists A € Uya,

with p(4,Q) < e.

Note that property (2) provides that the discretization scheme does not deteriorate in its
ability to approximate a given set as n — oo, and moreover becomes arbitrarily fine. The
following theorem gives a separating set that satisfies the necessary condition for minimality.

Theorem 3.2. Assume

(i) F = (F;): U — RP is differentiable with derivative fq = (f})

(i) Br, (21, %) < (M/p)[p(Q1, ), forj=1,...,p

(i) p(Q, Q%) = 0= fh - B llL, =0, forj=1,.

Suppose a discretization scheme satisfying (1) and (2) above is employed, Algoritm (3.3)
is executed successively with h = hy,h = hs,..., and the resulting sets are denoted
21,99,...,. Then if {Q;} has a p-accumulating point it follows that fq separates Q.

Proof: Rename the p-convergence subsequence of {Qx}52, as {Q:}§2,. Fix ¢ > 0 and
ACKQ, Aec U. Now since fsiz € L1(X,U,m), there exists § > 0 such that

mA<6:>/ fildm < ¢/5 (1)
A
Choose k so large that (2)-(5) hold
1 = faulle, </ (2)
There exists Ax € U,n, with
p(Ax, A) < 6/2 (3)
p(2,82) < 6/2 (4)
Mhym(X) < ¢/5 (5)

Then

[ fiam <1 [ gdm~ [ gidmi
A A A
+|/ f}',dm—/ f";,kdml-f-/ ,jhdm+/ £, dm
Ar—-Qs Akﬂnk
<e/5+e/5+|/ —f’dm]+/ fhdm
Ap—=Qp Ax—Sh

+/ fi dm < 2%/5+¢/5+¢ 5+/ fi, dm
Aknnk i / Akﬂﬂk e
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Now, Ax (% € Uya, and Ax Q% C Q.
Thus by Theorem 4.2,

/ N fs'iudm < Mh} < Mhim(X) < €/5.
O

Thus

/f{,dmge, VACSQ, AeU, forall j=1,...,p.
A

Therefore

'f{,so ae.on £, forall j=1,...,p

Similarly f{] 20 ae. on Q¢, foral j=1,...,p
Therefore fo = (f}}) separates Q. The proof is complete.

4. Coneclusion

In this paper, We have attempted numerical method which approximately converges to
the element satisfying the necessary condition for the unconstrained problem involving mul-
tiobjective set functions. An existing computational approach can be analysed further and
a new numerical method can be proposed for unconstrained set function optimization. Con-
strained problem can be converted into unconstrained case by the result of section 2. But
this will require more effort in choosing appropriate multipliers. And it will be a new area of
research. The algorithm obtained should be further tested experimentally to gain experience
on such matters as reliability, rate of convergence.
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