Development of Direct Analysis of Metal and Non-metal Ions in Aqueous Samples with the Moderate Power Helium Microwave Induced Plasma

중급 출력 마이크로파 유도 플라즈마를 이용한 금속 및 비금속 수용액시료의 직접 분석법의 개발

  • Park, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 박용남 (한국교원대학교 화학교육학과)
  • Published : 19911100

Abstract

The moderate power (500 W) Microwave Induced Plasma was generated with helium gas and was used for the direct analysis of aqueous samples. Usually, the helium plasma obtained with a modified Beenakker type cavity forms a cylindrical one. Though, by the careful controls of gas flows, a "toroidal" shape plasma could be made but its analytical performances were found to be worse. Using the glass frit nebuliser, the detection limits for metal ions obtained were around 10~100 ppb and that for chloride was about 50ppm.

헬륨 기체를 사용하여 중급 출력(500W) 마이크로파 유도 플라즈마(Microwave Induced Plasma:MIP)를 헬륨 기체를 사용하여 만든 뒤 직접 수용액 시료 분석에 사용하였다. Beenakker의 cavity를 변형시켜 얻은 안정된 헬륨 플라즈마는 실린더 형태의 모양을 하고 있고 기체의 흐름량을 조절하여 "toroidal"형태의 플라즈마도 얻을 수 있으나 분석학적 능력은 오히려 감소되었다. Glass Frit Nebuliser를 이용하여 분석하였을 때 금속 원소는 10~100 ppb 근처의 검출한계를 보였고 비금속원소인 염소의 경우는 50ppm근처의 검출한계를 보였다.

Keywords

References

  1. Spectrochim. Acta v.11B E. Badarau;M. Giurgea;A. T. H. Trustia
  2. Fresenius'Z. Anal. Chem. v.198 W. Tappe;J. van Calker
  3. J. Appl. Phys. v.22 J. D. Cobine;D. A. Wilbur
  4. Anal. Chem. v.48 R. K. Skogerboe;G. N. Coleman
  5. Rev. Sci. Instr. v.36 F. C. Fehsenfeld;K. M. Evenson;H. P. Broida
  6. Spectrochim. Acta v.31B C. I. M. Beenakker
  7. Appl. Spectrosc. v.35 A. T. Zander;G. M. Hieftje
  8. Anal. Proc. v.18 P. C. Uden
  9. CRC Crit. Rev. Anal. Chem. v.14 T. H. Risby;Y. Talmi
  10. Am. Lab. v.15 no.8 J. W. Carnahan
  11. Spectrochim. Acta. v.33B C. I. M. Beenakker;B. Bosman;P. W. J. M. Boumans
  12. Appl. Spectrosc. v.25 K. Fallgatter;V. Svoboda;J. D. Winefordner
  13. Anal. Chem. v.58 K. C. Ng;W. Shen
  14. Anal. Chim. Acta v.142 J. P. J. van Dalen;B. G. Kwee;L. de Galan
  15. Talanta v.33 J. P. Matousek;B. J. Orr;M. Selby
  16. Anal. Chim. Acta v.120 J. F. Alder;Q. Jin;R. D. Snook
  17. Anal. Chim. Acta v.123 J. F. Alder;Q. Jin;R. D. Snook
  18. Anal. Chim. Acta v.183 K. G. Michlewicz;J. W. Carnahan
  19. Spectrochim. Acta v.33B C. I. M. Beenakker;P. W. J. M. Boumans
  20. Anal. Chem. v.56 D. L. Haas;J. A. Caruso
  21. Anal. Chem. v.59 P. G. Brown;D. L. Haas;J. M. Workman;J. A. Caruso;F. L. Fricke
  22. Anal. Chem. v.57 J. J. Urh;J. W. Carnahan
  23. Appl. Spectrosc. v.45 Y. Pak;S. R. Koirtyohann
  24. Spectrochim. Acta v.36B A. Bollo-Kamara;E. G. Codding
  25. Anal. Chem. v.58 K. G. Michlewicz;J. W. Carnahan
  26. Ph. D. Thesis, University of Missouri J. Rybarczyk
  27. J. Appl. Spectrosc. v.39 M. L. Bruce;J. M. Workman;J. A. Caruso;D. J. Lahti
  28. J. Appl. Spectrosc. v.39 M. L. Bruce;John, M. Workman;J. A. Caruso;D. J. Lahti
  29. M. S. Thesis, University of Missouri E. McClendon
  30. Anal. Chem. v.46 V. A. Fassel;R. N. Kniseley
  31. Spectrochim. Acta v.27B E. Krantz
  32. Appl. Spectrosc. v.39 R. D. Deuch;G. M. Hieftje