Kinetics and Stereochemistry for the Aquation of trans-$[Co(en)(tmd)Cl_2]^+$Cation

Trans-$[Co(en)(tmd)Cl_2]^+$ 錯이온의 水化反應에 對한 反應速度와 立體化學

  • Jeong, Jong-Jae (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Roh, Byung-Gil (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Eun-Ki (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Oh, Sang-Oh (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 노병길 (경북대학교 자연과학대학 화학과) ;
  • 김은기 (경북대학교 자연과학대학 화학과) ;
  • 오상오 (경북대학교 자연과학대학 화학과)
  • Published : 19911100

Abstract

The stereochemical ratio cis and trans isomer of the hydration reaction of trans-$[Co(en)(tmd)Cl_2]^+$ complex ion were studied with varing temperature by the spectrophotometric method. It was observed that the ratio of cis-isomer was about 30%, and the intermediate was rearranged. And in order to investigate this mechanism more clearly, stability energy profile, interaction diagram and orbital correlation diagram were calculated by the EHT method. By the calculation, the mechanism of cis-isomer was in good agreement with the experimental results, and it was estimated that the hydration reaction was carried through some distorted square pyramid (sp).

trans-$[Co(en)(tmd)Cl_2]^+$ 착이온의 수화반응에 대한 입체화학 생성물의 trans 이성질체와 cis이성질체의 비율을 분광광도법을 이용하여 온도를 변화시켜가면서 측정하였다. 이 실험 결과 cis-이성질체가 약 30% 이었으며, 중간체가 재배열됨을 알 수 있었다. 이 메카니즘을 좀 더 명확히 하기 위하여 EHT법을 이용하여 각 중간체의 Stability energy profile과 Interaction diagram 및 Orbital crrelation diagram를 계산하였다. 이 계산 결과 cis-이성질체의 생성경로가 실험결과와 거의 일치하였으며, Square Pyramid(SP)에서 약간 distortion된 상태에서 수화반응이 진행됨을 알 수 있었다

Keywords

References

  1. Inorg. Chem. v.12 M. C. Couldwell;D. A. House;H. K. Powell
  2. Stereochmistry of Octahedral Substitutions C. K. Ingold;R. S. Nyholm;M. L. Tobe
  3. Inorg. Chem. v.17 W. G. Jackson;A. M. Sargeson
  4. Acta Cryst. v.B25 F. A. Cotton;W. T. Edwards
  5. Acta Cryst. v.B25 S. Baggio;L. N. Becka
  6. Inorg. Chem. v.25 H. Kupka;J.R. Perumareddi;C. Kruger
  7. J. Am. Soc. v.90 S. T. Spees;J. R. Perumareddi;A. W. Adamson
  8. Aust. J. Chem. v.23 D. A. House(et al.)
  9. Inorg. Chem. v.23 L. G. Vanquickenborne;K. Pierloot
  10. Coord. Chem. Rev. v.36 D. A. Palmer;H. Kelm
  11. Coord. Chem. Rev. v.50 T. W. Swaddle
  12. Rev. Phys. Chem. Jpn. v.50 R. Van. Eldil;H. Kelm
  13. J. Am. Chem. Soc. v.96 J. I. Zinc
  14. Phil. Mag. v.3 E. A. Guggenheim
  15. J. Chem. Phys. v.39 R. Hoffman
  16. J. Chem. Phys. v.36 R. Hoffman;N. Lipscomb
  17. J. Chem. Phys. v.37 R. Hoffman;N. Lipscomb
  18. Molecular Orbital Theory C. A. Ballhausen;H. B. Gray
  19. J. Chem. Phys. v.41 G. Burns
  20. Inorg. Chem. Acta. v.5 D. A. Brrown
  21. J. Am. Chem. Soc. v.104 D. M. Hoffman(et al.)
  22. J. Am. Chem. Soc. v.98 R. H. Summervile(et al.)