Synthesis of Novel Acyclonuclosides : Study on the Synthesis and Characteristics of New $N_1$-Substituted 5-Fluorouracil

새로운 Acyclonucloside의 합성 : 새로운 $N_1$-Substituted 5-Fluorouracil 유도체의 합성과 그 특성에 관한 연구

  • Seung Ho Jung (Department of Chemistry, Gyeongsang National University) ;
  • Yong Jin Yoon (Department of Chemistry, Gyeongsang National University) ;
  • Chong Kwang Lee (Department of Chemistry, Gyeongsang National University)
  • 정승호 (경상대학교 자연과학대학 화학과) ;
  • 윤용진 (경상대학교 자연과학대학 화학과) ;
  • 이종광 (경상대학교 자연과학대학 화학과)
  • Published : 1991.06.20

Abstract

$N_1-alkyl-5-fluorouracil$ derivatives from 2-chloro-ethylacrylate(CEA) were synthesized. The reaction of 5-fluorouracil(5-FU) with 2-chloroethyl acrylate gave 1-hydroxyethyl-5-fluorouracil(HEFU) in 70% yield. The treatment of HEFU with acryloyl chloride afforded 1-acryloyloxyethyl-5-fluorouracil (AOEFU). Poly(1-acryloyloxyethyl-5-fluorouracil)[Poly(AOEFU)] was also synthesized from 5-fluorouracil and Poly(CEA). The hydrolysis rates of $N_1-alkyl-5-fluorouracil$ derivatives were observed by means of UV spectrophotometer at 265 nm in ethanol-water(1 : 1); k = the constant of hydrolysis rate, $k=1.38{\times}10^{-4}$/sec for HEFU, $k=9.25{\times}10^{-5}$/sec for AOEFU, $k=4.16{\times}10^{-5}$k = 4.16 ${\times}$ $10-5}sec$ for Poly(AOEFU). The differential thermal analysis and thermogravimetry of 5-fluorouracil derivatives have been discussed.

합성된 2-chloroethyl acrylate를 출발물질로 이용하여 5-fluorouracil의 $N_1$-위치에 각각 hydroxyethyl, acryloyloxyethyl, poly(acryloyloxyethyl)기를 가진 5-fluorouracil 유도체를 높은 수율로 얻었다. 이들 유도체들과 HCl과의 가수분해속도를 물-에탄올(1:1) 혼합용매에서 UV 분광기를 이용하여 측정하였다. 1-hydroxyethyl-5-fluorouracil, 1-acryloyloxyethyl-5-fluorouracil 및 Poly(1-acryloyloxyethyl-5-fluorouracil)의 가수분해속도는 각각 $k=1.38{\times}10^{-4}$sec, $9.25{\times}10^{-5}$/sec, $4.16{\times}10^{-5}$/sec 이었다. 또한, 합성된 5-fluorouracil 유도체의 열분해성에 대해 논의하였다.

Keywords

References

  1. J. Med. Chem. v.21 no.8 M. Yasumoto
  2. J. Med. Chem. v.23 T. Kametani(et al.)
  3. Eur. Poly. J. v.22 no.7 T. Ouchi;H. Yuyama
  4. J. Bioactivity and Campatible Polymers v.2 M. Akashi
  5. Macromol. Chem. Rapid Commun. v.6 T. Ouchi(et al.)
  6. Baidtekunokoji Kenkyu Hokokusho T. Ouchi
  7. J. Polym. Sci. v.23 T. Ouchi(et al.)
  8. Chem. Pharm. Bull. v.35 no.10 S. Ahamad
  9. J. Med Chem. v.2 no.11 A. F. Cook(et al.)
  10. Kagaku Kyoho No Ryoiki v.3 no.10 F. Hiroshi(et al.)
  11. J. Org. Chem. v.47 no.9 T. Nisitani
  12. Bull. Chem. Soc. Japan v.50 no.9 S. Ozaki;Y. Iky
  13. Heterocycles v.20 no.12 S. Ozaki(et al.)
  14. Biochemistry of Cancer R. W. Brokman;E. P. Anderson
  15. Ed. Pergamon. Oxford v.4 A. D. Jenkins
  16. J. Polym. Sci. v.17 G. B. Batler(et al.)
  17. Bull. Chem. Soc. Japan v.50 no.8 M. Tada(et al.)
  18. J. Polum. Sci. v.17 M. Akashi(et al.)
  19. Polymer Chemistry Edition v.22 N. M. Brahme(et al.)
  20. J. Polym. Sci., part A v.3 S. Krause(et al.)
  21. Synthetic Procedure in Nucleic Acid Chemistry D. T. Browne;W. W. Zorbach(ed.);R. S. Tipson(ed.)
  22. Makromol. v.178 M. Akashi(et al.)
  23. Die Makromolekulare Chem. v.120 K. Kondo
  24. Introduction of Physical Organic Chemistry R. D. Gilliom
  25. J. Macromol. Sci-Chem. v.13 no.3 G. B. Butler(et al.)