DOI QR코드

DOI QR Code

Comparative Study of Emission Quenching of Tris(${\alpha},{\alpha}'$-diimine)-Ruthenium(II) Complexes in Homogeneous and Sodium Dodecyl Sulfate Micellar Solutions

  • Published : 1991.12.20

Abstract

Emission quenching of photoexcited tris(${\alpha},{\alpha} '$-diimine)-ruthenium(II) complex cations, $RuL_3^{2+}$ (L: 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine; 4,4'-diphenyl-2,2'-bipyridine; 1,10-phenanthroline; 5-methyl-1,10-phenanthroline; 5,6-dimethyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline) by $Cu^{2+}$, dimethylviologen $(MV^{2+})$, nitrobenzene (NB), and oxygen was studied in aqueous homogeneous and sodium dodecyl sulfate (SDS) micellar solutions. The apparent bimolecular quenching rate constants $k_q$ were determined from the quenching data and life-times of $^{\ast}RuL_3^{2+}$. In homogeneous media, the quenching rate was considerably slower than that for the diffusion-controlled reaction. The decreasing order of quenching activity of quenchers was $NB>O_2>MV^{2+}>Cu^{2+}$. The rate with $Cu^{2+}$ was faster as the reducing power of $^{\ast}RuL_3^{2+}$ is greater. On the other hand, the rates with NB and $O_2$ were faster as the ligand is more hydrophobic. This was attributed to the stabilization of encounter pair by van der Waals force. The presence of SDS enhanced the rate of quenching reactions with $Cu^{2+}$ and $MV^{2+}$, whereas it attenuated the quenching activity of NB and $O_2$ toward $RuL_3^{2+}$. The binding affinity of quenchers to SDS micelle and binding sites of the quenchers and $RuL_3^{2+}$ in micelle appear to be important factors controlling the micellar effect on the quenching reactions.

Keywords

References

  1. The Chemistry of Ruthenium E. A. Sneddon;K. R. Sneddon
  2. Coord. Chem. Rev. v.84 A. Juris;V. Balzani;F. Barigelletti;S. Campagna;P. Belser;A. Von Zelewsky
  3. Membrane Mimetic Chemistry J. H. Fendler
  4. Heterogeneous Photochemical Electron Transfer M. Gratzel
  5. ACS Monograph 181 The Chemistry of Excitation at Interfaces J. K. Tomas
  6. Photochemistry and Photophysics in Microheterogeneous Systems K. Kalyanasundaram
  7. J. Am. Chem. Soc. v.98 C. -T. Lin;W. Bottcher;M. Chou;C. Creutz;N. Sutin
  8. J. Am. Chem. Soc. v.105 B. L. Hauenstein, Jr.;W. J. Dressick;S. L. Buell;J. N. Demas;B. A. DeGraff
  9. Inorg. Chem. v.23 B. L. Hauenstein, Jr.;K. Mandel;J. N. Demas;B. A. DeGraff
  10. J. Phys. Chem. v.88 B. L. Hauenstein, Jr.;W. T. Dressick;T. B. Gilbert;J. N. Demas;B. A. DeGraff
  11. J. Phys. Chem. v.88 W. J. Dressick;B. L. Hauenstein, Jr.;T. B. Gilbert;J. N. Demas;B. A. DeGraff
  12. J. Phys. Chem. v.93 T. Miyashita;T. Murakata;M. Matsuda
  13. Bull. Korean Chem. Soc. v.6 J. W. Park;Y. H. Paik
  14. Bull. Korean Chem. Soc. v.7 J. W. Park;Y. H. Paik
  15. J. Phys. Chem. v.73 G. R. Seely
  16. Principle of Fluorescence Spectroscopy J. R. Lakowicz
  17. J. Colloid Interface Sci. v.66 F. B. Matheson;A. D. King
  18. Chem. Phys. Lett. v.64 N. J. Turro;M. Aikawa;A. Yekta
  19. Bull. Korean Chem. Soc. v.9 J. W. Park;S. H. Kim
  20. J. Phys. Chem. v.93 S. W. Snyder;S. L. Buell;J. N. Demas;B. A. DeGraff
  21. Solubilities of Inorganic and Organic Compounds v.3 H. L. Silkock(ed.)
  22. J. Am. Chem. Soc. v.100 C. L. Kwan;S. S. Atik;L. A. Singer
  23. J. Phys. Chem. v.83 D. A. Doughty
  24. J. Am. Chem. Soc. v.108 W. J. Dressick;J. Cline, Ⅲ;J. N. Demas;B. A. DeGraff
  25. Isr. J. Chem. v.12 Y. A. Ilan;D. Meisel;G. Czapski
  26. J. Phys. Chem. v.91 J. W. Park;Y. H. Paik
  27. The Bipyridinium Herbicides L. A. Summers
  28. Handbook of Chemistry and Physics R. C. West(ed.)
  29. J. Phys. Chem. v.86 G. L. McIntire;D. M. Chiappardi;R. L. C.asselberry;H. N. Blount
  30. J. Chem. Soc. Rev. v.10 A. A. Gorman;M. A. Rodgers
  31. J. Am. Chem. Soc. v.95 J. N. Demas;D. Diemente;E. W. Harris
  32. J. Am. Chem. Soc. v.99 J. N. Demas;E. W. Harris;R. P. McBride
  33. J. Am. Chem. Soc. v.110 Q. G. Mulazzani;M. Ciano;M. D'Angelantonio;M. Venturi;M. A. J. Rodgers
  34. J. Phys. Chem. v.93 C. J. Timpson;C. C. Carter;J. O. Olmsted Ⅲ
  35. J. Chem. Soc. Perkin Trans. v.I K. K. Park;C. W. Lee;S. -Y. Oh;J. W. Park
  36. J. Am. Chem. Soc. v.101 C. R. Bock;J. A. Conner;A. R. Gutierrez;T. J. Meyer;D. G. Whitten;B. P. Sullivan;J. K. Nagle
  37. J. Am. Chem. Soc. v.102 V. Balzani;F. Bolletta;F. Scandola
  38. J. Phys. Chem. v.90 H. Rau;R. Frank;G. Greiner
  39. J. Phys. Chem. v.66 W. R. Ware
  40. Bull. Korean Chem. Soc. v.11 J. W. Park;M. Y. Suk;B. -T. Ahn
  41. J. Phys. Chem. v.83 G. L. Gains, Jr.
  42. Chem. Phys. Lett. v.59 S. S. Atik;L. A. Singer
  43. J. Phys. Chem. v.78 M. Gratzel;J. K. Thomas
  44. Chem. Phys. Lett. v.68 J. C. Dereren;M. van der Auweraer;F. C. de Schryver
  45. Chem. Phys. Lett. v.73 H. W. Ziemiecki;R. Holland;W. R. Cherry
  46. J. Am. Chem. Soc. v.103 H. Ziemiecki;W. R. Cherry
  47. J. Chem. Soc. Faraday Trans. v.1 no.78 S. J. Atherton;J. H. Baxendale;B. M. Hoey
  48. J. Am. Chem. Soc. v.102 F. Grieser;R. Tausch-Tremi
  49. J. Am. Chem. Soc. v.102 R. H. Schmehl;D. G. Whitten
  50. J. Am. Chem. Soc. v.103 T. K. Foreman;W. M. Sobol;D. G. Whitten
  51. J. Am. Chem. Soc. v.102 C. Creutz;M. Chou;T. L. Netzel;M. Okumura;N. Sutin