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During the course of our research to develop new cephalo­

sporin antibiotics we needed various heterocyclic thiols. We 

have recently reported1 that 2-alkylthio-4,5-dihydro-5-metho- 

xythiazoles 2 is prepared by theremal or diethyl ether-boron 

trifluoride mediated intramolecular cyclization of the corres­

ponding 7V-(2,2-dimethoxylethyl) dithiocarbamic acid esters 

1 (Scheme 1). Continuing our studies on the synthesis of 

heterocyclic compounds, we have investigated its possibility 

for the conversion of heterocyclic compounds 3, which pos­

sess acetal and thiol moieties, into the corresponding fused 

ring monothioacetals 4 (Scheme 2). Although there is a grow­

ing number of methods for effecting intermolecular mono- 

thioacetalization2 between acetals and thiols, we here report 

intramolecular monothioacetalization using various hetero­

cyclic thioureidoacetals 3 with Lewis acid.

The starting 4-(2,2-dimethoxyethyl)-5-thioxo-l,2,4-triazoles 

5a-e used in this study are readily prepared3,4 from the cor­

responding 4-(2,2-dimethoxyethyl)-3-(acyl) thiosemicarbazide 

by treatment with aqueous sodium hydrogen carbonate, and 

the l-(2,2-dimethoxyethyl)-5-mercaptotetrazole (6) is prepa­

red5 from the methyl A^*(2,2-dimethoxyethyl) dithiocarbamate4 

with sodium azide. Also, 2-mercaptobenzimidazo!e 7 or 3H- 

imidazoE4,5-b]pyndine 8 is obtained by treatment of 4- 

chloro-3-nitrobenzotrifluoride or 2-chloro-3-nitropyridine with

Scheme 1

Scheme 2

aminoacetaldehyde dimethylacetal and reduced with sodium 

hydrosulfite and further treatment with O-ethylxanthic acid, 

potassium salt, respectively.6

These heterocyclic mercaptoacetals 5-8 undergo the Lewis 

acid mediated intramolecular cy이ization to give methoxy- 

thiazolidine fused heterocycles, i.e., 6-methoxy-5,6-dihydro- 

thiazolo[2,3-c]-l,2,4-triazoles 5-methoxy-5,6-dihydro- 

thiazolo[3t2-d]tetrazole (10), 2-methoxy-7-trifluoromethyI-2,3- 

dihydrothiazolo[3,2-a]benzimidazole (11), and 2-methoxy-2,3- 

dihydrothiazoloC2,,3,:2,3]imidazo[4f5-b]pyridine (12) in good 

yields.

The general procedure involved addition of diethyl ether­

boron trifluoride (2.2-3.3 equiv.)7 to a stirred solution of mer­

captoacetal 5-8 (1.0 equiv.) in dry dichloromethane at room 

temperature. The mixture was stirred at ambient tempera­

ture for the time indicated in Table 1. Aqueous basic (Na- 

HCO3) work-up and purification by recrystallization afforded 

the product. Table 1 gives the list of compounds studied

Table 1. Methoxythiazolidine Fused Heterocycles Prepared

Reactant Et2O-BF3 Time Product Yield" Mp.(t) Molecular 'H-NMR (DMSO-d6/TMSy MS (70 eVy

(equiv) (min) (%)
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CHa 5b
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N—OMe 2.2 10 N s 86
gg

PhPh
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(solvent) formula & J (Hz) m/z (%)

148-150 C5H7N3OS 3.36 (s, 3H, OCH3), 4.41 157 (M+, 84),

(THF) (157.0) (d, 2H, J = 2.9, H-5), 6.17 127 (29), 126

(t, 1H, J=2.9, H-6), 8.49 (100), 114 (36),

(s, 1H, H-3) 71 (36)

117-118 C6H9N3OS 2.33 (s, 3H, OCH，，3.39 171 (M+, 35),

(EtOAc) (171.1) (s, 3H, OCH3), 4.32 (d, 2H, 140 (100), 115

J = 2.8, H-5), 6.22 (t, 1H, (12), 99 (20),

J=2.8, H-6) 97 (33)

73-74 C8HnN3OS 1.07 (m, 4H, CH2-cyclo- 197 (M+, 77),

(EtOAc) (197.1) propyl), 1.74 (m. 1H, CH- 196 (70), 182

cyclopropyl), 3.44 (s, 3H, (14), 166 (100),

OCH3, 4.27 (d, 2H, J=2.5, 141 (15), 97

H-5), 5.97 (t, 1H, J=2.5, (27)

H-6)

171-172 CnHnNQS 3.39 (s, 3H, OCH3), 4.51 233 (ML 40),

(EtOAc) (233.1) (d, 1H, J =12.6, H-5), 4.80 202 (94), 146

(dd, 1H, J =125 4.7, H-5), (12), 103 (100),

6.30 (d, 1H, J=4.6, H-6), 99 (23), 97

7.52-7.85 (m, 5Hs低) (28)
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161-163

(THF/ 
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C/NQS

(200.2)

3.39 (s, 3H, OCH3), 4.55 

(d, 2H, J=2.8, H-5), 6.26 

(t, 1H, J=2.7, H-6), 7.88, 

8.24 (s, each 1H, NH2)

200 (M+, 18), 

169 (100), 156 

(21), 152 (21)

SH

N소 人。배«

6
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72-73

(EtOAc)

CHNQS

(158.2)

3.51 (s, 3H, OCH3), 3.73 

(d, 2H, J = 3.0, H-6), 6.28 

(t, 1H, J=3.0, H-5)

158 (M+, 29), 

97 (27), 76 

(20), 72 (13), 

58 (100)

PA

X0Me
7

2.2 10 78Wti 

서、OMe

11

162

(EtOAc)

CuH19F3N2OS
(274.3)

3.49 (s, 3H, OCH3), 4.40 

(dd, lHt J=11.7, 4.9, H-3),

4.49 (dd, 1H, J =11.7, 1.1, 

H-3), 5.98 (dd, 1H, J=4.9, 

1.1, H-2), 7.29, 7.46 (two

d, J—8.3, each IHmmz位)， 

7.90 (s, IHfM

274 (ML 40), 

243 (100), 231 

(24), 229 (14), 

187 (19)

◎»애

、애■

8

2.2 30

12

210 C9H9N3OS

(207.2)

3.49 (s, 3H, OCH3), 4.44 

어d, 1H, J=12.1, 5.2, H-3), 

4.67 (dd, 1H, J =12.1, 1.0, 

H-3), 5.99 (dd, 1H, J=5.2,

1.0, H-2), 7.15 (dd, J=8.0,

207 (ML 45), 

176 (100), 164 

(29), 135 (30), 

108 (12)

5.0, IHg血),7.86 (dd, J =

8.0, L4, IHg心)，8.21 (dd,

J = 5.0, L4,

fl Yield of isolated product.b Recorded on a Bruker AM-200 spectrometer.f Recorded on a Hewlett Packard model 5985 B spectrometer.

d Recorded on a Varian Gemini 300 spectrometer (CDC13).

and the yields of isolated product, together with spectral 

identification data.
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6. The 2-mercaptobenzimidazole 7 and 3H-imidazoE4,5-b] py­

ridine 8 were prepared in 46, 60% overall yield from 4- 

chloro-3-nitrobenzotrifuoride and 2-chloro-3-nitropyridine, 

respectively.

7. Treatment of 5a-e with 5 equiv. of MeSO3H (CH2C12, r.t, 

2-5 h) and subsequent saturated aqueous NaHC03 work­

up gave similar results.
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It is now well established that rhodium (II) catalyzed in­

tramolecular C-H insertion reactions of a-diazo-p-ketocar- 

boxylic acid methyl esters result in the formation of cyclopen­

tanones.1 Under similar conditions, a- diazoketones,2,3 a- 

diazo-P-ketosulfones4 and a-diazo-P-ketophosphonates5 are 

also converted into five-membered carbocyclic systems. In 

these reactions, electron withdrawing substituents decrease 

the reactivity of the adjacent C-H bondslc,2 and the insertion 

reaction is promoted at the C-H bond adjacent to ether oxy­

gens.3 The propensity for the formation of five-membered 

carbocycles can sometimes be overcome: the dominating fac­

tor of ether activation may prevail and cyclohexanone deriva­

tives may be formed3, and subtler electronic factors may pro­

vide enough impetus for more favorable formation of cyclo-


