DOI QR코드

DOI QR Code

Conformation of L-Ascorbic Acid in Solution 2. L-Ascorbic Acid Anion

  • Mi Suk Kim (Department of Pharmacy, Chungbuk National University) ;
  • Sung Hee Lee (Department of Pharmacy, Chungbuk National University) ;
  • Uoo Tae Chung (Department of Pharmacy, Chungbuk National University) ;
  • Young Kee Kang (Department of Chemistry, Chungbuk National University)
  • Published : 1991.04.20

Abstract

In the unhydrated and hydrated states, conformational free energies of L-ascorbic acid anion (AAA) were computed with an empirical potential function and the hydration shell model (a program CONBIO). The conformational energy was minimized from possible starting conformations expressed with five torsion angles of the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. As found in L-ascorbic acid (AA), intramolecular hydrogen bonds (HBs) are proved to be of significant importance in stabilizing the overall conformations of AAA in both states, and give the folded conformations, which are quite different from those in crystal. There are competitions between HBs and hydration around O3 atom of the lactone ring and hydroxyls of the acyclic side chain. Especially, the whole conformation of AAA is strongly dependent on the water-accessibility of O3 atom. Though there is a significant effect of the hydration on conformational surface, the lowest energy conformation of the unhydrated AAA is conserved. The different patterns of HBs and hydration result in the conformations of AAA in both states being different from those of AA. It can be drawn by several feasible conformations obtained in the hydrated state that there exists an ensemble of several conformations in aqueous solution.

Keywords

References

  1. Biochem. J. v.22 A. Szent-Gyorgyi
  2. The Vitamins v.1 W. H. Sebrell, Jr.;R. S. Harris
  3. Z. Naturforsch, B v.28 K. M. Bansal;M. Schoneshofel;M. Gratzel
  4. J. Electroanal. Chem. Interfac. Electrochem. v.47 A. Aldaz;A. M. Alquie
  5. Acta Chem. Scand. v.27 E. Flood;P. N. Skancke
  6. J. Mol. Struct. v.67 C. Thomson
  7. Chem. Phys. Lett. v.38 G. L. Carlson;H. Lable;L. G. Pedersen
  8. Z. Naturforsch, A v.41 M. Eckert-Maksic;P. Bischof;Z. B. Maksic
  9. Acta Crystallog. Sec. B v.25 J. Hvoslef
  10. Tetrahedron v.33 S. Berger
  11. J. Am. Chem. Soc. v.94 G. P. Laroff;R. W. Fessenden;R. H. Schuler
  12. J. Phys. Chem. v.87 G. Nemethy;M. S. Pottle;H. A. Scheraga
  13. J. Phys. Chem. v.88 M. J. Sippl;G. Nemethy;H. A. Scheraga
  14. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  15. erratum, J. Phys. Chem. v.92 Y. K. Kang;G. Nemethy;H. A. Scheraga
  16. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  17. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  18. J. Phys. Chem. v.92 Y. K. Kang;K. D. Gibson;G. Nemethy;H. A. Scheraga
  19. Bull. Korean Chem. Soc. v.12 Y. A. Shin;Y. K. Kang
  20. Conformational Analysis Programs for Biological Molecules (CONBIO), KRICT Research Report Y. K. Kang
  21. Yakhak Hoeji v.33 B. S. Kim;S. H. Lee;U. T. Chung;Y. K. Kang
  22. Arch. Pharm. Res. v.13 S. H. Lee;U. T. Chung;Y. K. Kang
  23. Bull. Korean Chem. Soc. v.11 Y. K. Kang;D. W. Kim
  24. Korean Biochem. News v.10 no.1 Y. K. Kang
  25. ACM Trans. Math. Software v.9 D. M. Gay
  26. J. Chem. Phys. v.51 N. Go;H. A. Scherage
  27. Macromolecules v.9
  28. Macromolecules v.10 S. S. Zimmerman;M. S. Pottle;G. Nemethy;H. A. Scheraga

Cited by

  1. Conformation and hydration of acetylcholine vol.269, pp.1, 1992, https://doi.org/10.1016/0022-2860(92)80019-e
  2. A theoretical study of ascorbic acid oxidation andHOO˙/O2˙radical scavenging vol.15, pp.20, 1991, https://doi.org/10.1039/c7ob00791d