DOI QR코드

DOI QR Code

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A. (Department of Chemistry, Chungbuk National University) ;
  • Kang, Young-Kee (Department of Chemistry, Chungbuk National University)
  • Published : 1991.02.20

Abstract

Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Keywords

References

  1. Biochem. J. v.22 A. Szent-Gyorgyi
  2. Vitamins and Hormones v.30 M. J. Barnes;E. Kodicek
  3. Adv. Physiol. Sci. v.12 E. Ginter;P. Bobek;J. Babala;F. Kubec;D. Urbanova;O. Cerna
  4. The Vitamins v.1 F. Smith;W. H. Sebrell, Jr.(ed.);R. S. Harris(ed.)
  5. J. Am. Med. Assoc. v.230 V. Herbert;E. Jacob
  6. Zh. Fiz. Khim. v.48 E. V. Shtamm;A. Purmalis;Y. Shurlatov
  7. J. Natl. Cancer Inst. v.54 M. Archer;S. Tannenbaum;T. Fan;M. Weisman
  8. Acta Chem. Scand. v.27 E. Flood;P. N. Skancke
  9. J. Mol. Struct. v.67 C. Thomson
  10. Chem. Phys. Lett. v.38 C. L. Carlsson;H. Lable;L. C. Pedersen
  11. Z. Naturforsch., A v.36 P. Bischof;M. Eckert-Maksic;Z. B. Maksic
  12. Modeling of Structure and Properties of Molecules M. Eckert-Maksic;Z. B. Maksic;P. Bischof;Z. B. Maksic(ed.)
  13. Acta Crystallogr., Sec. B v.24 J. Hvoslef
  14. J. Mol. Struct. v.142 J. Guilleme;E. Diez;M. M. Gomez;M. Secundino;L. Garrigos
  15. J. Phys. Chem. v.87 G. Nemethy;M. S. Pottle;H. A. Scheraga
  16. J. Phys. Chem. v.88 M. J. Sippl;G. Nemethy;H. A. Scheraga
  17. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  18. erratum, J. Phys. Chem. v.92 Y. K. Kang;G. Nemethy;H. A. Scheraga
  19. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  20. J. Phys. Chem. v.91 Y. K. Kang;G. Nemethy;H. A. Scheraga
  21. J. Phys. Chem. v.92 Y. K. Kang;K. D. Gibson;G. Nemethy;H. A. Scheraga
  22. KRICT Research Report Conformational Analysis Programs for Biological Molecules (CONBIO) Y. K. Kang
  23. Bull. Korean Chem. Soc. v.11 Y. K. Kang;D. W. Kim
  24. Yakhak Hoeji v.33 B. S. Kim;S. H. Lee;U. T. Chung;Y. K. Kang
  25. Korean Biochem. News v.10 no.1 Y. K. Kang
  26. Arch. Pharm. Res. v.13 S. H. Lee;U. T. Chung;Y. K. Kang
  27. J. Phys. Chem. v.74 Y. F. Yan;F. A. Momany;H. A. Scheraga
  28. J. Phys. Chem. v.79 F. A. Momany;R. F. McGuire;A. W. Burgess;H. A. Scheraga
  29. ACM Trans. Math. Software v.9 D. M. Gay
  30. J. Chem. Phys. v.51 N. Go;H. A. Scheraga
  31. Macromolecules v.9 N. Go;H. A. Scheraga
  32. Macromolecules v.10 S. S. Zimmerman;M. S. Pottle;G. Nemethy;H. A. Scheraga

Cited by

  1. Conformation and hydration of acetylcholine vol.269, pp.1, 1992, https://doi.org/10.1016/0022-2860(92)80019-e