고분해능 전자에너지손실 및 자외선광전자분광법을 이용한 ZrC(111)면의 산소흡착 연구

Oxygen Chemisorption of ZrC(111) Surface by High-Resoltion Electron Energy Loss and Ultraviolet Photoelectron Spectroscopy

  • Hwang, Yeon (Department of Inorganic Materials Engineering, Seoul National University) ;
  • Park, Soon-Ja (Department of Inorganic Materials Engineering, Seoul National University) ;
  • Aizawa, Takashi (National Institute for Research in Inorganic Materials) ;
  • Hayami, Wataru (National Institute for Research in Inorganic Materials) ;
  • Otani, Shigeki (National Institute for Research in Inorganic Materials) ;
  • Ishizawa, Yoshio (National Institute for Research in Inorganic Materials)
  • 발행 : 1991.12.01

초록

고분해능 전자에너지손실과 자외선광전자분광법을 사용하여 단결정 ZrC(111)면의 산소흡착을 연구하였다. 산소는 낮은 산소노출량에서 $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ 구조로 흡착된다. 노출량이 승가하면 $1{\times}1$ 구조로 바뀌는데 이때 흡착하는 산소원자는 $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ 구조에서보다 흡착높이가 낮으며 3-fold hollow site의 중심에 놓이지 않고 bridge site에 가까와진다. 서로 다른 산소흡착 거동은 개끗한 ZrC(111) 표면에서 두개의 표면전자상태에 기인한다.

Oxygen chemisorption on single crystal ZrC(111) surface was studied by high-resolution electron energy loss and ultraviolet photoelectron spectroscopy. At a low amount of oxygen exposure, adsorbed oxygen atoms construct $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ structure. On the other hand, oxygen adsorption changes into $1{\times}1$ structure as the amount of oxygen exposure increases. The adsorbed oxygen atoms show smaller vertical distance from the Zr topmost layer in the $1{\times}1$ structure than in the $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ structure and approach to the bridge site rather than 3-fold hollow site. The two different oxygen adsorption behavior comes from the two different surface stales of the clean ZrC(111) surface.

키워드

참고문헌

  1. J.Less-Comm. Metals v.82 C.Oshima;M.Aono;S.Zaima;Y.Shibata;S.Kawai
  2. Surf.Sci v.157 S.Zaima;Y.Shibata;H.Adachi;C.Oshima;S.Otani;M.Aono;Y.Ishizawa
  3. Solid State Commun v.37 A.M.Bradshaw;J.F.van der Veen;F.J.Himpsel;D.E.Eastman
  4. J.Phys.D:Appl.Phys v.22 Y.Ishizawa;S.Aoki;C.Oshima;S.Otani
  5. Low Energy Electrons and Surface Chemistry G.Ertl;J.Kuppers
  6. Adv.Chem.Phys v.49 E.W.Plummer;cap.Eberhardt
  7. J.Cryst.Growth v.51 S.Otani;T.Tanaka;A.Hara
  8. Electron Energy Losss Spectroscopy and Surface Vibrations H.Ibach;D.L.Mills
  9. Surf.Sci v.199 R.Soua;C.Oshima;S.Otani;Y.Ishizawa;M.Aono
  10. Jpn.J.Appl.Phys v.20 M.Aono;C.Oshima;S.Zaima;S.Otani;Y.Ishizawa
  11. J.Vac.Sci.Technol v.16 P.M.Stefan;C.R.Helms;S.C.Perino;W.E.Spicer
  12. Surf.Sci v.188 T.Komeda;Y.Sakisaka;M.Onchi;H.Kato;S.Masuda;K.Yagi
  13. Surf.Sci v.77 J.Kuppers;G.Ertl
  14. Methods of Experimental Physics v.22 Work Function Measurement L.W.Swanson;P.R.Davis;R.L.Park(ed.);M.G.Lagally(ed.)
  15. J.Magn.& Magn.Mater v.31-34 T.Hoshino;M.Tsukada
  16. Phys.Rev v.B14 H.Froitzheim;H.Ibach;Cap.Lehwald
  17. Surf.Sci v.173 N.D.Shinn;T.E.Madey
  18. Surf.Sci v.95 J.L.Gland;B.A.Sexton;G.Cap.Fisher
  19. Phys.Rev Lett v.44 H.Ibach;D.Bruchmann
  20. Surf.Sci v.173 A.G.Baca;L.E.Klebanoff;M.A.Schulz;E.Paparazzo;D.A.Shirley
  21. J.Vac.Sci.Technol v.16 B.A.Sexton
  22. Surf.Sci v.188 T.Komeda;Y.Sakisaka;M.Onchi;H.Kato;S.Masuda;K.Yagi
  23. Phys.Rev.Lett v.51 S.Anderson;P.A.Karlsson;M.Persson