29

Journal of the Korean
Statistical Society
Vol. 20, No. 1, 1991

On Asymptotically Optimal Plug-in Bandwidth Selectors in
Kernel Density Estimation”

Moon Sup Song*, Kyung Ha Seog”* and Sin sup Cho”

ABSTRACT

Two data-based bandwidth selectors*which are optimal in the sense that they achieve
n rate of convergence in kernel density estimation are proposed. The proposed bandwidth
selectors are constructed by modifying Park and Marron’ s plug-in method. The first modifica-
tion is taking Taylor expansion of the mean integrated squared error to two more terms
than in the case of plug-in method. The second is estimating more accurately the functionals
of the unknown density appeared in the minimizer of the expansion by using higher order
kernels. The proposed bandwidth selectors were proved to be optimal in terms of convergence
rate. According to small-sample Monte Carlo studies, the proposed bandwidth selectors sho-
wed better performance than all the other bandwidth selectors considered in the simulation.

1. Introduction

The area of nonparameteric density estimation has been remarkably progressed in recent years,
both in theoretical and practical aspects. There are various methods available for univariate density
estimation. See Silverman(1986) for the detailed description about density estimators. In this
paper we are particularly interested in the kernel estimator which is known to be simple, intuitively
appealing and best understood. To apply the kernel density estimator in practice, it is well
known that the choice of smoothing parameter(bandwidth) is more important than the choice
of kernel function. Various bandwidth selection methods have been studied. See Marron(1988)
for a listing of bandwidth selelction methods.

+ This research was suported by SNU Daewood Research Fund 83-90.
* Department of Computer Science and Statistics, Seoul National University, Seoul, Korea.
* % Department of Statistics, Inje University, Kimhae, Korea.
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The plug-in method, which was proved to be a successful data-based bandwidth selector by
Park and Marron(1990), has some weak aspects. For example, the existing data-based bandwidth
selectors based on plug-in method do not achieve n'* rate of convergence. In this paper, we
thus want to construct data-based bandwidth selectors which achieve the optimal rate of converge-
nce by modifying the plug-in procedure.

The first modification, which is motivated by Hall and Marron(1989), is done by taking Taylor
expansion of the mean integrated squared error to more terms than in the case of Park and
Marron’s plug-in method, and finding the approximate minimizer of the resulting approximate
mean integrated squared error. The second is done by estimating the unknown functionals of
the true density appeared in the approximate minimizer by using higher order kernels. The
associated bandwidth selector at the stage of estimating the unknown functionals still depends
on the underlying density. Two approaches are considered to resolve the dependence. One
approach is to replace the underlying density by some given reference density. The other one
is to take one more step to estimate the unknown functionals.

An independent study conducted by Hall, Sheather, Jones and Marron(1989) uses almost
the same idea and yields the same bandwidth selector as the proposed one with the first approach
above.

In Section 2, we introduce the appealing plug-in bandwidth selector. Our proposed bandwidth
selectors are proposed in Section 3. Section 4 is devoted to the comparison of the proposed
bandwidth selectors with various bandwidth selectors through small sample Monte Carlo studies.
‘The proposed bandwidth selectors show very good behaviors and dominate other bandwidth selec-
tors in all assumed underlying densities.

2. Plug-in Method
2-1. Mathematical Formulation and Notations

Let X;, Xz, - X, be a random sample from a probability density f. Then, using this sample,
we are interested in estimating f based on kernel functions. The kernel density estimator of
f> which was proposed by Rosenblatt(1956) and Parzen(1962), is given by

@ =n*Z K G—X),

i=]

where K, (x) =K(x/h)/h, K is called the kernel function and /% is called the bandwidth or smoo-
thing parameter. It is well known that the choice of the kernel function X is of essentially negligible
concern compared to the choice of bandwidth % (see Chapter 3 of Silverman(1986)). For this
reason, we often compare the density estimators through the performance of the corresponding
bandwidth selectors. The limiting distributions of data-based bandwidth selectors are useful tools
to compare the sample variability and characteristics.

The convergence rate of a bandwidth selector obtained from the limiting distribution is usually
determined by the amount of smoothness of density f or by the order of the kernel function
K. We thus introduce the definitions of the smoothness order of f and the order of K in the
following.

Definition 2.1. (1) Let v={+n, where ! is an integer and 1 € (0, 1]. The density function
f is said to have smoothness of order v when the condition that f has a Holder continuous and
square intergrable second derivatives is satisfied and there is a constant M > 0 so that
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| e () —fe () | <M |x—y|" for all x and y, @.1n
(2) The kernel function K is said to have order r when

1, j=0,
| ¥ K(x) dx= { 0, j=1,,r—1,
¢, j=r,(c£0).

Widely considered performance measures of f are
ISEm)= [ G —2, (2.2)
and
MISE()=E [ (f —p*. 2.3

‘For another criterion, see Devroye and Gyorfi(1984). The fact that there is, for all reasonable
sample sizes, a considerable difference between Jus, the minimizer of ISE(4), and luauss, the
minimizer of MISE(h), has been established by Hall and Marron(1987b). In this paper, MISE(h)
is used as the performance measure of f, because of its sample stability. Another reason for
use of MISE(h) is given in Hall and Marron(1989) who present an importance sense in which
ISE(h) is too difficult a goal.

2-2. Plug-in Method

The plug-in bandwidth selector which we review here was developed by Hall(1980) and Sheather
(1983, 1986), and quantified asymptotically by Park and Marron(1990).
The asymptotic representation of MISE(%) in (2.3) can be written as

AMISE(h) = (nh)* R(K) +h* g R(f")/4, (2.4)
where R(K) and y; are defined as follows.
REK)= [K* (x) dx ; w= [ 2K (x) dx.

The minimizer of AMISE(A), hauss, can be represented as

— __R(K> }1/5 5
RBasise= {R(f")?_— n. (2.5)

The idea is to replace the only unknown factor R(f*) in huass: by some suitable estimator. The
estimator considered is

R =RF") —n'a*R(K"), (2.6)

where @ is a bandwidth differing from 4. The minimizer of approximate mean squared error
of B.(f"), @auss, have the relationship to Jause such as

aase=Ci(K) C:(f) b ks o)
where

C.(K) = {18R(K™) ¢/ 442 RUD?™,

N = {RORGY /R s,

Since the scale of f, denoted by A, is considered to be more crucial than f itself on the determina-
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tion of the value of C:(f), it seems to be enough to replace f in C:(f) by g, where g.(x) =g.(x/\) /A
and g, is any fixed probability density with unit scale factor. Since C:(g.) =A¥* C:(g1), the relation
(2.7) motivates the equation

a;.(h) = C1 (K) Cz(g'z) }\,3“3]110/13- (2. 8)

Using the equations (2.5), (2.6) and (2.8), the plug-in bandwidth selector, ks, is defined
to be the solution of the equation

R(K) "
h= —;T;——_ n-l/S,
Uz Raw (f' D

where A denotes ay/ # - consistent estimator of A (e.g. standard deviation, interquartile range).

According to the results of Park and Marron(1990) and Park(1989), under a strong assumption
about the underlying smoothness (v >1), the rate of relative convergence of i to huse is
#*%. Thus, the sample variability of 4~ decreases much faster than that of /v (the unbia-
sed cross-validated bandwidth selector due to Rudemo(1982) or Bowman(1984)) or fscv(the
biased cross-validated bandwidth selector due to Scott and Terrel (1987)) whose convergence
rate is #¥°. Note that the efficiency of 4x depends on the underlying smoothness as the case
of Jiscv. If the underlying distribution is not smooth enough, %~ has more sample variability
than that of Aucy.

3. The Proposed Bandwidth Selectors
3-1. The Proposed Bandwidth Selectors

As discussed in Section 2.2, the plug-in method developed by Hall(1980) and Sheather(1983,
1986) represents a as a function of 2 and solve the resulting nonlinear equation. This approach,
so called solved equation version of plug-in, makes the problem of bandwidth selection complicated
to solve. Thus it seems natural to consider an alternative approach in which instead of representing
a as a function of %, we plug R(f") into R(f") directly. We may call this approach as a direct
plug-in method and let hep be the resulting bandwidth selector. Note that this direct plug-in
method gives the same asymptotic distribution as that of e, Accordingly, the direct plug-in
method may be better in the sense of computation.

The direct plug-in bandwidth selector, fmw, is

Frn= {% }’n (3.1)

where R(f") is an estimator of R(#’). Hall and Marron(1987a) discussed slightly more general
problem of estimating R(#™). The estimators considered are

R =(—D"n'n—1D* a* U * U{X:i—X)/a},

izj
and

B = (=D n'(e=1" @ ZU {(X—X)/a},

where U is a kernel function of order » and a is a bandwidth. For simplicty of presentation,
we let R.(f) denote either R(f”) or Ri(f™) and assume that
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A1. U is symmetric and has 2m derivatives which vanish at +co.

According to Hall and Marron(1987a), we can construct a /7 - consistent estimator of R(f"")
by using higher order kernel. Accordingly, since the other factors in (3.1) depend only on
K and sample size, we can obtain a bandwidth selector /= whose relative rate of convergence
to hwuse is n'”. However, note that the /7 - consistency is to huass not to usz. The rate of
relative convergence of sz is given by Park(1989) as follows.

o(n?"), if 0<<v<1
o(n™), ifv>1
Thus the resultant estimator /ep» can not have faster rate than #? to huse.

Bacause of such defect, Hall and Marron(1989) discussed an improved Aamss, which is based
on

hAMISE/ hse— 1= {

AMISE* () = (nh)* R(K) +h'R(f") &/4—h® po e R(f?) /24— 0 R(f)
=AMISE (1) —h® pa e R(F¥) /24— 0" R(P) (3.2
The minimizer of AMISE*(h), hausz*, can be represented by

hase® = hasse + Rirase LiAR(f(3))/{20L12_R(f')}+O(1’l'l)
R 5 R 5 9
={ __Z_QQ___ }1/ n“’5+{ [ ___;(L_:'u e }3 _“‘R;_(f(_)_ +00). (3.3)
w? R W’ R(F") 20uf R(f")
The great advantage of using hawss*to the direct plug-in method is
hawss*/ hanss—1=0(") for v > 5/4.

The asymptotic performance of the bandwidth selector based on the representation (3. 3) highly
depends on how good estimators of R(f’) and R(f®) we use. Therefore we now focus our attention
on the estimation of R(f™). As is shown in Hall and Marron(1987a), R.(f’) is biased nega-
tively, if the kernel U has order 2. Hence there will be tendency to positive bias in the estimator
of huuse*if we use R,(f) in estimating husss*, in view of (3.3). Moreover, R.(f’), which is
expected to be positive, often has negative value for small sample size. We thus propose to
use R.(f") as an estimator of in estimating R(f) defined by

R =™ R(U) + (= 1)" n*(n—1)"E U * U (Xi—X), (3.4)

inf

which is essentially equal to R(f”). Note that the leading bias term #' a*1 R(U™) in (3.4)
actually dominate the mean squared error of R,(f™).

To introduce the minimum mean squared error of E(f""’) we use the following notations.
Let

D,=R(U"™)

D,=2R(HR(U™ % U™)

Dy= [ {fo)f—R(f)?

D:=2(—1)" R(f*"?) [x Ux) d/r |

Theorem 3.1. If U satisfies the condition Al and has order », and if f has smoothness
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of order v>m+7r/2—2 and v>>2m—2, then the minimum mean squared error of R, (f™)
is
‘(4m‘*1) —{(2r+1)

E{R() —R(f™)F=D, ¢ #on+i 5 7ot

—(2m+1) 2 2r
+ D c rrem+l +D c r+2m+1 5 TrEmFI +D3 nl

+o (n ,—+sz1+"-1) (3.5)

1
which is achieved by taking a=(cn)V"***?, where

@m+1) D,
¥D,

c= -D;

D,
Remark 3.1. It can be easily seen from Theorem 3.1 that if D, <0 and a= —D;/DQ then
the leading term 0(#*****?) in (3.5) is canceled out. Therefore Ra(f”’) is superior to R,(f"")
since the convergence rates of R, (f™) and R, (™) are =@ o/rantd g ysrsrrantd | regpecti-
vely. We also know that if D, <0, then R, (/) is inferior to R.. However, this inferiority

does not matter in density estimation(m=2) when > 6, since both R () and
R.(f”) have their convegence rate n’2.

if D,>0

if D,< 0.

Remark 3.2. The minimizing ¢ in Theorem 3.1 is unavailable as it stands since it depends
on the unknown quantity D,. However, as in Section 2.2, D, may be replaced by

DR =2(~D"R(g"?) [ 2 UG du/lr | &>,

where A is a good estimator of the scale of f.

Remark 3. 3. Sheather and Jones(1989) proposed to use what is called diagonals-in estimators
as estimators of R.(f*"). Indicating that the bias of the non-stochastic term(arising if /=j in
R.(f)) usually has the opposite sign to the bias due to the smoothing, they reintroduce the
non-stochastic term omitted in Hall and Marron(1987a). Accordingly, they choose a bandwidth
selelctor to make these bias terms ‘canceled out.

Based on Theorem 3.1 and Remark 3.2, we propose Bt which has #*2 rate of convergence
toward /gse. In particular,

}i:bmpI:EAMISE_*-ﬁASMISE Ié:z(fm) w/ZO}lzéq(f"), (3.6)
where
. R(K) "
A ‘:{ N } 5,
AMISE uﬁ R, ( f' ,) n
and

El(f”)Zn"aisR(Ui’)+2n“(n—1)"ais_§ r* U {(Xi—X) /@),

with U; a kernel of order 6, a; a bandwidth seleictor defined by
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A 6! 5R(U) ut }lm
— — —_—
a=a® }‘{ 12 [ 2Ui(x) dx R(g,*) ’
- Sl
12 [ 2U(x) dx R(&:®) ’

and where

R,(f) =n'a; R(UL) — 2n (n— 1)“a2'7§ U % UP{(Xi—X;) / as},

with U: a kernel of order 2, 4. a bandwidth selector defined by

- R(U) »? v
oo DR o0 e |

and where X is any \/7 - consistent estimator of the sale of f.

The following theorem is essentially due to the fact that MSE(R,(F)}=0(n") and MSE
R,/ }=0(n*).

Theorem 3. 2. If f has smoothness of order v > 2.25, and if U; and U, statisfy the condition
Al with m=2 and m=3, respectively, then

nw(il\mpx/hmss -1) ~ N{0, 4(R(f")'] f (fw)zf*‘ 1)/25}.

Remark 3.4. An independent study conducted by Hall, Sheather, Jones and Marron(1989)
uses almost the same idea and yields the same bandwidth selector as the proposed bandwidth
selector Am. As estimators of R(f™), they use the result of Sheather and Jones(1989).

Recall that g, and a. which appear in constructing /. depend on the functionals of the deri-
vatives of the underlying density f. Also note that

bias R (F) | =narR(U) — 225 R(F) £ U(x) dx/6 ! +o(ad), (3.9
and
bias Ry (f) }=n"aiR(U®) — 3 R(F¥) 2 U(x) dx+0(ad), (3.10)

wiere &;=0(n™) and 2.=0(n™). According to (3.9) and (3.10), even N(0, pilot for f
in R(f“) and R(f®) are sufficient to give the proposed bandwidth selector \/% - consistent in
relative sense. So far, we have replaced the unknown density f by the reference density
gl( ° / }: )/ 7: .

However, differences between the reference density and the true density f may yield bandwidth
selectors which have poor performance in small sample sizes. We now propose a new bandwidth
selector which is expected to have better performance in small smaple sizes as well as is optimal
in the sense of convergence rate. New proposed bandwidth selector 4.z can be obtained by
the same method as that of fm except that ay in (3.7) and a. in (3.8) are replaced by af
andas, respectively, which use estimators of R,(f¥) and R.,(f*) instead of R(f®) and R(f**).
In particular,
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SIRWUD
at= R,,g(fﬁ)-”“{ ‘ } ™,

2 f x“Ul(x) dx
and
R(U?) }1/9
* 4)) -1/9. - -1/9

@ = Ra(f) { [ #U(x) dx ne
where

R(f®) =n'as"R(U:”) — 20" (n— 1)-‘a3'“% U * UP {(Xi— X)) /as},
and

R, =n'ai*R(U®) + 21" (n— 1)“@",’% U? * UP {(Xi— XD /ai}s
with kernel functions Us; and U, of order 2, a; and a, being bandwidth selectors defined by

A R ((]gS))‘ }1/13
— @yvs) —— 757 113
= W) { [ #U) dx B

and

R(Uy)) }U“ am
[ #U.G) dx e

respectively. The asymptotic distibution of . is the same as that of Ams given in Theorem
3.2.

a= }’\‘R(gl(s)) -uu{

3-2. Proofs

Proof of Teorem 3.1. From Hall and Marron(1987a, 1989),
MSE{R. (™) }= {bias(R.(*)) P2+ varlR.(f)}
=w'a®™ D, +a D +na*™ D+ 4n'D; + ot +a” +nat?).
MSE'{R.(f")} = (—4m~2)n"a*" Di+ 2(r-2m-Dn’'a** DD+ 2ra®' D
={2rDa* "+ (—4m — 2)n' D} {Dsa”* "+ 1D} =0

Immediately,  the solutions are given by
_{ (Zm + 1) Dln-] }I/(r‘f‘Zm\"l)

a _
rD,
{ — Dt }l/(r+2m+1)
or
D,

In order to prove Theorem 3.2 we state and prove a lemma which uses Theorem 1 in Hall
(1984).

Lemma 3.1. If U is a kernel function satisfying the condition Al, with ¢ = 0 but na — «,
then Zi; aU™ * U™ {(X,—X))/a} is asymptotically normally distributed.

Proof of Lemma 3.1. First note that aU"™ % U™ {(X,—X,)/a} can be decomposed into
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j[w( — )—u@} [zf( - )—u@)]dt

+ u(t)[U'"’( t“aX" >+U‘""< t_f’ )} dt— [ u(O* dt, (3.1

u@® =E{U"”’< ta—X ) }

We denote H,(X;, X;) to be the first term in (3.11), then
E{Hn(.Xh XZ)}=09

where

and
E{Hn(Xh XZ) I Xl}:().

So, H, is degenerate martingale. Furthermore, we can obtain EH? = 0(a*) and EH: = 0(a).
Finally, if we let

G"(x’ y) :E{Hn(Xh A:') H"(XI, y)}
= [H.(u, #) Hu, 3) f(u) dy,

then we have EG; = 0(d").
Therefore, asymptotic normality follows from Theorem 1 of Hall(1984), since

E{G:(X, XD} +ntE{HX, X)) | E{HE(X, XD} 12
=0(a") +n'0(a) /0(a®) "= 0.

Proof of Theorem 3.2. Let hums*be the minimizer of
NG - -
AMISE* (k) = (nh)* R(K) +h* R.(f") 1E/4—h® o R(FP) /24,

then Taylor expansion of fuims*yields

il:qﬁss* :ﬁw1w+ﬁm1$ ﬁfM/lS\E* Li4 I\;a(f“))/ZOuz jéa(f”) + O(nl) s (3- 12)
where

A R(K) 15

P . R B
We may put

haias" = husnss + homse s 1t Re(F®) /200 R(F7) .
From the above equation, we can easily get

il;mm '“‘I:J'AA}TSE* =0 (n‘) »

ﬁAA;ZSE* _ﬁAM/l\SE* = O(n") .
Furthermore, we can obtain

NN N
AMISE* ' (hamse*) =AMISE* ' (hapuse™) — AMISE* ' (hasasz*)
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=hiase"s [R(P) =R 1= hiuss bt RF2) —R(F) ]
=hA31mss'}l§ [Rz(f") _R(f”) J+o(nv),
thus o~ A ~ A _
AMISE* ' (hunss*) =AMISE* ' (hamss*) + AMISE* " (h*) (hamse™ — haims*)

= hihse* 15 Déz(f") —R()] +O0hiase*) (hasmse™ — hainse*)

where 4* lies between hawss" and Auas: From (3.3) and (3.12), the distribution of fprep:/
humse—1 is determined by that of R.(f"). Then the result is immediate from Hall and Marron
(1987a), and Theorem 3.1 and Lemma 3.1 in this paper.

4. Simulation Resulis

We have seen the asymptotic behaviors of the proposed bandwidth selelctors. But to get some
ideas of how good the proposed bandwidth selectors are in practical situation, it is quite useful
to investigate their small-sample properties. For this purpose, simulation studies are conducted.
In this section, the simulation results are presented and a brief discussion on the results is
also given.

4-1. Design of the simulation

In the simulation study, we include the following typical density functions :

1. standard normal density, N(0, 1).

2. mean mixture, 0.5N(1.5, 1)+0.5N(-1.5, 1).

3. variance mixture, 0.9N(0, 1)+0.1N(0,25).

4. asymmetric distribution, 0.75N(0.5, 1)+0.25N(-0.5, 1).

The reason we used these densities is that they are variants of normal densities so that we
can compute the exact MISE(h) and R.(f™) easily due to Marron, Park and Wand(1989).

The sample sizes considered here are n=25, 50 and 100, and the number of repetitions used
is nrep=300. We investigate small samle properties of the bandwidth selectors bery hrocvs hacy
and the proposed bandwidth selectors Apmy: and fm. ‘As kernel functions we took K, U Us
and U, be standard normal density ¢. To construct a kernel function of order 6, we may apply
the method of Silverman(1986, Section 3.6.2) in which kernel function of order 4 is derived.
In our simulation study, we used the kernel function U: of order 6 defined by

U(x) =¢&) —¢"(x)/2+ 0" (x)/8
=(15/8—54%/4+x/8) o (x).

We restrict the range of # to (3> Fppi/3). The values of ficv and fsor are chosen to be
the largest local minimizers of their object functions if there are more than one local minimum.
If there are no local mimima in the range under consideration, then either the right endpoint
or the left of the range is chosen. In this simulation study, BCV(k) sometimes fails to have
a local minimum when sample size is 25. In particular, in the normal case 27/300 and in the
case of variance mixture 81/300 of BCV(%) had no local minimum. In order to find 4 we
used an iteration method using A, as an initial value.

In order to take the Monte Carlo variability properly into account, we computed the pivo-
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Fig. 1.a. Overlay of Kernel Density Estimators of Various Bandwidth Selectors in Standard Normal
Case with n=100.
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Fig. 1.b. Overlay of Kernel Density Estimators of the Distributions of Various Bandwidth Seiectors
in Mean Mixture Case with n=100.
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Fig. 1.c. Overlay of Kernel Density Estimators of the Distributions of Various Bandwidth Selectors
in Variance Mixture Case with n=100.
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Fig. 1.d. Overlay of Kernel Density Estimation of the Distributions of Various Bandwidth Selectors
in Asymmetric Case n=100.
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95% confidence intervals of
MISE(R) /MISE (hyss) — 1,
which is given by
(B/(1+T), P/(1—D)),
where P is an estimator of
P=E(MISE (/) /MISE (hss) } — 1, (4.1
and
T=1.96(2/nrep) .

See Marron(1989) for derivation and discussion of these intervals.

Table 1 contains the results of the confidence intervals, which are arranged from the best
to the worst for each sample sizes, for the comparision number P in (4.1). This allows comparision
of various bandwidth selectors, and at the same time -gives an idea of the sample variability
involved.

Figure 1. a~Figure 1.d contain a more visual method of illustrating the comparison of bandwidth
selectors. The figures show an overlay of the kernel density estimators of the densities of logw (%)
—logulhmss) for n=100 observations from () the standard normal, (b) the mean mixture,
(¢) variance mixture, and (d) asymmetric distribution. The bandwidth used for the kernel estima-
tors was the oversmoother which is due to Terrel and Scott(1985).

4-2. Simulation Results

From the table and figures, we can see that our proposed bandwidth selectors /s and Apm:
have good performances for all underlying densities and for all sample sizes. As expected,
Jymp: has better performances than /. in the standard normal case and also in the asymmetric
case. However, the performance of A is better than that of Fyops When the assumed densi-
ties have somewhat different structure from standard normal, such as variance mixture and
mean mixture. Especially, in the variance mixture case, fmp behaves much better than ﬁpmp,_
We can also see from the table that the biased cross-validated bandwidth selector /fumcv
exhibits very poor behaviors for #=25 in all cases. But for #=100 the performances of fscv

is usually better than that of /uwy is usually better than that of fuv and sometimes better than
that of sx. The performance of hcv is poor for all sample sizes in the normal and asymmetric

cases. The plug-in bandwidth selector /i has relatively good performance in all cases. Especially
in the mean mixture case, it exihibits better performance than that of hauus: for =25 although
not significantly so.

From the figures, we can also see that the distributions of /v have long tails and are ske-
wed to the right for all the cases. However, the other bandwidth selectors have almost symmetric
distributions. In particular, the distributions of /. have short tails, which is difficult to see
in the talbe.
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