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ABSTRACT

Considerable progress on the problem of data-driven bandwidth selection in kerne] density
estimation has been made recently. The geal of this paper is to provide an introduction to
the methods currently available, with discussion at both a practical and a nontechnical theoreti-
cal level. The main setting considered here is global bandwidth kernel estimation, but some
recent results on variable bandwidth kernel estimation are also included.

1. " Introduction

The nonparameteric kernel density estimator uses a sample X, -*,X, from a density f, to
estimte the curve f(x) by

A =17 £ KG=X), 1.1

where K,(x)=K(x./h)./ h, K is called the kernel function, and % is called the dandwidth or
smoothing parameter. Both K and % are to be selected by the user. When K is a probability
density function, so isﬂ and this. is usually the case preferred in applications. It is understood
that ﬁ puts probability mass, according to Ki. around the cbserved data points X:’s, so the
bandwidth controls the degree of smoothing applied to the data by the kernel density estimate.

Like all other types of nonparametric curve estimators, the choice of the bandwidth is the
central issue in the application of the kernel density estimator. This is demonstrated in Fig.
1. In Fig. la, the curve is the true underlying density function. Fig. la also includes a kernel
density estimate at the bottom of the plot. This estimate is based on a very samll bandwidth.
It is not given for comparison with the true curve, but as a descriptor of the 100 simulated
data. It is scaled down to one sixth of its original height to prevent its graph from interfering
with the graph of the true density. Fig. 1b, 1c and 1d show the same true density curve together
with kernel density estimates, as shown as the thick curves, corresponding to different bandwid-
ths, as shown by the curves representing K, which appear at the bottom of each plot. Note
that in Fig. 1b, the bandwidth is quite narrow, with the result that there are not enough observa-
tions involved in the construction of ﬁ. at each point x, and the resulting estimate is excessively
subject to sample variability, i.e. is too wiggly. This is improved in Fig. lc, where a larger
bandwidth has been used. In Fig. 1d, the bandwidth is so large that observations from too
far away are involved in the construction of £,(x), with the effect of introducing some bias,
or in other words the bimodal feature of the underlying density curve has been smoothed away.
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The great advantage of kernel density estimator, also possessed by all other types of nonparame-
tric curve estimators, is that this estimator does not hide features in the true densities, i.e.
does not impose structures on the data, by allowing the data to speak for themselves. For exam-
ple, think of doing N(u,c?) parametric estimation using the data in Fig. 1. In this case, one
can not catch the bimodal feature of the true density since the parametric approach does impose
unimodal structure on the data. For interesting collections of effective data analyses carried
out by nonparametric density estimation in general and by the kernel method in particular, see
Silverman(1986) .

However there is an obstacle which one has to overcome for practical application of this powerful
method, which is that the bandwidth must be chosen. Effective data analysis has often been
done by a subjective, trial and error approach to the choice of the bandwidth, which consists
of looking at several different plots representing different amounts of smoothness. While this
approach certainly allows one to learn much about the data set, it can never be used to convince
a skeptic since broad range of alternative choices are not considered. This leads one to search
efficient and objective methods of using the data to determine the amount of smoothing.

This paper reviews considerable recent progress on the problem of data-based selection of
the bandwidth in kernel density estimation. Attention will be focussed here on the methods
proposed since 1988. However some of the methods proposed up until 1987 will be discussed
here also to motivate the ideas and to demonstrate the effectiveness of the new methods. For
detailed discussion on such old methods, see the survey by Marron(1988).

There is an important class of kernel density estimators other than the type defined in (1.1),
which use different amounts of smoothing at different locations. Note that the estimator defined
in (1.1) uses uniform(or global) bandwidth for all x values, and certainly this type of estimator
does not perform well when the underlying density has features which require different amounts
of smooting at different locations. The bandwidth selection problem for the wariable bandwidth
kernel estimators is much harder than for the global bandwidth kernel estimators since there
are essentially infinitely many parameters to choose. Hence there have been relatively fewer
attempts for searching data-driven methods to choose the variable bandwidth. Recently, several
promising methods have been proposed, which are based on transformations of original data.
These are discussed in Section 4.

Section 2 of this paper introduces two theoretically optimal global bandwidths, both based
on squared error performance measures, that are often discussed in the literature and most
data-driven bandwidth selectors aim for. Section 3 introduces and discusses various method
for data-driven bandwidth selection in global bandwidth kernel density estimation. Section 5
discusses future research.

2. Theoretically optimal Bandwidths

The usual error criteria, which assess how well ];, in (1.1) estimates f, are the integrated
squared error

ISE®) =[ () —fx) Vdx, (2.1

and its expected value(for fixed 4), the mean integrated squared erro:

MISE(h) =EUISE(h)]. (2.2
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Note that the integration in both (2.1) and (2.2) reflects the global, rather than the local,
nature of investigations. Related criteria are the integrated absolute error

HEW =] 1At —f&) | dx,
and its expected value

MIAE(R) =EUAE(h) 1.

Although Devroye and Gyorfi(1984) point out a number of reasons for using these absolute error
type criteria, their use has not gained wide acceptance, one reason being that squared error
criteria are much easier to work with from a technical point of view. For this reason, all of
the real theoretical breakthroughs in density estimation have come first from considering sqaured
error criteria, in the hope that the idea may be extended to the absolute error case with much
more work.

Most published theoretical work takes /o, the bandwidth that minimizes MISE of ﬁ., as the
theoretically optimal bandwidth, rather than ho, the(random) bandwidth that minimizes ISE speci-
fic to the data set at hand. There is no consensus about which should be taken as the right
bandwidth to aim for, though. Note that

EUSE(h) 1<EUSE (1)1,

and this means_that the ideal bandwidth, assuming that best estimation of f is truely the objective,
is not fu, but /. However, /o, being a random quantity itself, is a much harder target to estimate
than 4. In fact, Hall and Marron(1991) show that the best possible relative error rate of converge-
nce of any data-driven bandwidth selector to 4 is of order » ¥®, much slower thatn n~*7
the rate to 4. Furthermore, Jones and Kappenman(1991) argued that estimating /, well remains
a particularly " useful way to go about seeking data-driven bandwidth selectors which perform
well in terms of hO, too. This outlook leads back to %, being suitable to aim for. See Jones(1991)
for further discussion of this issue.

The usual way of accessing the theoretical performance of various data-driven bandwidth selec-
tors(h’s) is to compare them with 4. It is well established that direct comparison w1th ho is
the key to understanding the performance of f,. as an estimate of f relative to that of f;,o In
particular, by simple Taylor series expansions, the asymptotic properties of ./ ho can be directly
translated into analogous asymptotic properties of MISE(#)./ MISE(h.) (see, for example, Park
and Marron 1990).

For later use, let us introduce here the usual asymptotic version of (2.2) which we call AMISE
(for asymptotic MISE) :

AMISE(h) = (nh) ™' R(K) +h'sR(f") /4. 2.3)

Here and below, o= [¢’K(x)dx and R(g) = g*(x)dx. Note that as # —>c0 and s —>0, with nh
—> o, under some conditions on K and f,

MISE(h) =AMISE (h) +o(AMISE(R))

(see, for example, Silverman 1986, Section 3.3). The two terms in AMISE provides a very
clean asymptotic summary of the smoothing problem. Recall from Fig. 1, that too small a bandwi-
dth results in too much sample variability. Note that this is reflected by the first term(unusally
called the variance term) in AMISE becoming too large. On the other hand, the fact that too
large a bandwidth gives too much bias, is reflected by the second term(usually called the bias
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term) which gets too large in this case.

Some of the data-driven bandwidth selectors are motivated from the asymptotic representation
(2.3) of MISE. This is the result of a tendency to think of 4;, the bandwidth that minimizes
AMISE, as being the same as . It is seen by Marron and Wand(1991) that %, usually begins
to provide a decent approximation to k, for sample sizes between 100 and 1000, but in some
cases the sample size needs to be close to one million for good approximation.

3. Selection Methods
3-1. Preliminaries

Most of data-driven bandwidth selectors are divided into two groups according to their target
functions, one of which is MISE and the other is the asymptotic representation of MISE. Note
that none of these two target functions yields an immediately practicable method for choosing
i since both of them have some dependence on’the unknown f. We can, however, estimate
the f-dependent quantities and then choose h on the basis of the corresponding estimated target
functions. In particular, functionals of f of the form 6,=R(), m=0,1,2,-, where f is
the m-th derivative of f, prove to be of particular importance. We can estimate each 8. by quantities
involvingf; as investigated by Hall and Marron(1987b), where f, is a kernel density estimator
with bandwidth now represented by g and kernel L (allowed to be different from % and K because
estimation of this integral is a different smoothing problem form estimation of /). Both alternatives
derived as potentially good estimators by Hall and Marron are :

ém(g) =m—-1) —an(ﬁ(m)) —(n—1)"lg " R(L™)
={(n—Dn} g (- D" TZ.,,L* L) {g " (X.— X))} 3.0
(where *denotes convolution) and

8=~ £ 000

={(n—Dn} g (~1)" T L% {g" " (Xi—X)} (3.2)

where f;.,- is a kernel density estimator using only (n—1) of the sample values leaving out X..

Both of the estimators above have a “cross-validatory” element to them, in that a non-stochastic
term arising from “i=j” terms is deleted, on the grounds that it causes unnecessary bias. Jones
and Sheather(1991) investigates the reintroduction of the non-stochastic term and shows how
it can be used to improve the cross-validatory estimators. Their “non-cross-validatory” estimators
are ;

B.(0) =RE™) (3.3)
and

8. =(-D"" T £ (). (3.0

The key to successful employment of such non-cross-validatory estimation procedures is the recog-
nition that the non-stochastic term bias has the opposite sign to the bias due to smoothing.
Further more, it is possible to utilize the freedom, not available if g=#, to choose the associated
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bandwidth g to make these bias terms cancel and in this way to improve the MSE properties
of the resulting estimators.
A kernel L is said to be of order » if

[ L&dx=1, [ 2 L&)dx=0 for j=1,--r—1, [ xL(x)dx0.

Note that if L is a probability density function, it is of order 2. For the good asymptotic properties
of the estimators defined in (3.1) ~(3.4), higher order(greater than 2) kernels are often used.

3-2. MISE Based Methods
3-2-1. Least Squares Cross-Validation

The most widely studied bandwidth selector is least squares cross-validation, proposed by
Rudemo(1982) and Bowman(1984). Noting that

MISE(R) =E[R()1-2EL[ fi(x)fG)dx]+R () (3.5)
and the last term R(f) does not depend on /4, an unbiased estimate of MISE(h) —R(f),
CV(R) =R —28,(h), (3.6)

with L=K agd g=h for 60, is minimized to }1eld the least squares cross-validatory choice hievs
say. Here, 8o(%) is thought of as an estimaie & | fGf()dx rather than of R().

The main strength of this bandwidth is that it is asymptotically correct under very weak smooth-
ness assumptions on the underlying density(scz Hall 1983, and Stone 1984). However, it has
been seen that CV suffers a great deal of sample variability in the sense that for different data
sets from the same distributions, it will typically give much different answers. This has been
quantified asymptotically by Hall and Marron(1587a) and Scott and Terrell(1987), who show
that the relative rate of convergence of hicv to either of A or he is of the excruciatingly slow
order of # ¥, For other drawbacks discussicn of this bandwidth, see Marron(1988).

3-2-2. Complete Cross-Validation

Complete cross-validation(CCV), proposed by Jones and Kappenman(1991), estimates the
entire MISE function, as opposed to CV’s estimation of MISE(h) —R(f). Taking Bo(h) as an
estimate of R(f), one may estimate the entire MISE function by R(ﬁ) Bo(h) But this has
a bias since

ECB() 1=R() — R () / 2+ 34R() / 24+ 0 (i)
where 8x= f 2*K(x)dx. Observing that

E[B.(D]= =R(f) —cW*R(f") /2+0(i?)
and

ECBWI=R() +o(1)

(see Hall and Marron 1987b). this bias can be reduced to o(k¢) by using, as an estimate of
MISE(h),

cecvin) = R(ﬁ,) Bo(h) + o 201(12)/2+(60K—SK)h“Gz(h)/Zél 3.7
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The complete cross-validatory choice of h is the minimizer of (3.7). It has been shown by Jones
and Kgppenman(1991) that the relative rate of convergence of the CCV bandwidth selector™to
ho(or ho) is the same as, but the constant multiplier of the rate of convergence is slightly less
than(for K=¢, the standard normal density), of Ac.

3-2-3. Smoothed Cross-Validation

This was proposed and studied by Hall, Marron and Park(1991). The essential idea of smoothed
cross-validation(SCV) is related to CV. Note that when there are no duplications among the
data, which happens with probability one with truely continuous data, (3.6) can be written
as

CV(h) = (nh) —IR(K) +n"(n —1) -1 22.'.&,-(1{;, * Kh_ZKh+K0) (X-""X;) (3- 8)

(modulo #~n—1) where here and below K, denotes the Dirac delta function. This reveals that
unacceptably large noise in hcv is created by the second part in the right hand side of (3.8)
since it is the only random part of CV(h). The Smoothed cross-validation criterion addresses
this problem by modifying this term, by a type of “presmoothing” of the differences X;—X; which
has better stability properties. In particular, hscv is defined to be the minimizer of

SCV,(h) = (nh) "R(K) +B,(h), (3.9)
where

BW=n"n~1" T T {(K.*K,—2K,+Ko) *L,* L} (X — X)), (3.10)

i=1j=1
for the possibly different kernel function L and bandwidth g.

Remark : The original version of (3.10) defined in Hall, Marron and Park(1991) does not
have “i=j” terms. But Jones, Marron and Park(1991) have shown that there can be a substantial
advantage to leaving these terms in.

The reason that L,*L, is used here(instead of using simply L,) is that the second part in
the right hand side of (3.8) can be viewed as an estimate of integrated squared bias, B(h)=]
(K. *f—f)?, and use of L,* L, yields an intuitive estimate of this quantity. In particular, note
that

B =] (K*f~f)?
wheref; denotes the kernel estimator with kernel L and bandwidth g. Another compelling feature
of SCV is that it is essentially the same as a smoothed bootstrap estimate of MISE. The idea
of using a smoothed bootstrap estimate of MISE was first proposed by Faraway and Jhun(1990).
However, Faraway and Jhun did not recognized that the smoothed bootstrap estimate could
be calculated directly, and used simulation instead. Taylor(1989) proposed the same idea, and
did point out the exact form of the estimate, but his derivatiion is only in the special case L=K
and g=h. It has been seen by Hall, Marron and Park(1991) that use of higher order kerpel

L and an elaborate choice of g entail the very fast n~? relative rate of convergence of Ascv
to he, which has been shown to be the best possible by Hall and Marron(1991).

3-2-4. Bandwidth Factorizied SCV
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The idea of bandwidth factorization was introduced by Jones, Marron and Park(1991), where
the main idea was illustrated using SCV criterion, but it was pointed out that essentially the
same results are easily established for the methodology of Hall, Sheather, Jones and Marron
(1991). Note that higher order kernels are required for Asv to get an n™“* relative rate of
convergence(L needs to be of order 6). But, as is discussed by Marron and Wand(1991), the
use of higher order kernels is unappealing since, while they are excellent in the limit, quite
large sample sizes(even the millions is not sufficient in some cases) seems to be required all
too often before their beneficial effects begin to appear and become dominant. The main advantage
of bandwidth factorization is that it allows the fastest possible rate of convergence with the use
of only nonnegative kernels, i.e. kernels of order 2, at all stages of the selection process.

The main idea consists of allowing g to depend on %, which was not considered(except-in—-
one special case, g=h) by Hall, Marron and Park(1991). The dependence considered is the
factorization

g=Cn’h" (3.1

for various constants C, p and m. Note that the case m=0 corresponds to the ordinary SCV
discussed above. It has been shown by Jones, Marron and Park(1991) that when m=—2 and
p=—23/45, there is an important type of cancellation in the bias of the resulting bandwidth,
which is the key to #n™** convergence even in the case of nonnegative kernel L.

3-2-5. Stabilized Bandwidth Selector

The stabilized bandwidth selector, as was proposed by Chiu(1991), is also related to CV and
is based on the use of related Fourier transform method. Note that CV(k) is approximately
equal to

7 [T LSO KA — 2K () Jan+2K (0)./ (nh)

(see Silverman 1986, pp.62-63) where ¢ and ]Af are the characteristic functions of the sample
distribution function F, and K, respectively. This reveals that the large sample variability of
CV(h) is created by | $(A) 1%, especially when | ¢(A) | is negligible. This observation suggests
that the variation of kcy can be reduced by modifying | $(A) 1> when | ¢(A) | becomes negligible.
Chiu(1991) proposed to modify | ¢(A) I* into | oA FTALA) +#n " T(A>A) where A is the
first A such that | $(A) 1°<c/'n for some constant c>1. The reason of using the factor '
is that when | ¢(A) | is negligible, | ¢(A) |? is approximately an exponential random variable
with mean 7% So# | $(A) |?is compared with a critical value ¢ to decide when | ¢(A) | becomes
negligible. For example c=3%10g.(0.05) is approximately equal to the 95-th percentile of the
exponential distribution with meéan 1. The stabilized bandwidth selector is now defined to be

the minimizer of
A

SW=n"1 [ 150 KA ~2ZK k) hah
+ ) [, KW — 2K} +dh+2K ()4 (uh) s

which is equal to

(k)" RE) +r7* [X {1 T 12—n HE(hA) — 2K(hA) L. (3.12)

0

There is a close relationship between the stabilized criterion S(#) and SCV,{(h). Note that
the smoothed cross-validation criterion can be written as
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SCV,(h)=(uh) "RE) +n" [ = { 1§ 12—~ HI—K B L (gh)dA, (3.13)

0

where /I\:()») is the characteristic function of the kernel L. This observation reveals that the stabili-
zed criterion S(%) is equivalent to SCV,(%) when L is of infinite order, since the indicator function
I(— A<A<A) can be viewed as the Fourier transform of an infinite order kernel with the bandwi-
dth proportional to 1/ A. It has been proved by Chiu(1991) that the relative rate of convergence
of the stabilized bandwidth selector to 4o is again #™>*(as is expected from the close connection
to SCV). The main strength of this bandwidth selector is that its constant multiplier of the
rate of convergence is also best possible, which has been shown by Fan and Marron(1991).
However, it should be noted that the best constant can be also achieved by SCV and the bandwidth
factorized SCV with infinite order kernels L, although this fact is not mentioned in the correspon-
ding papers.

3-3. AMISE Based Methods
3-3-1. Biased Cross-Validation

This was proposed and studied by Scott and Terrell(1987). The essential idea is to minimize
the following estimate of AMISE(h),

BCV (i) =(nh) "' RK) +Ko'0:(h) (3.14)

where 62(11) uses the same kernel K and bandwidth 2 as when estimating f itself. Scott and
Terrell(1987) show that the biased cross-validated bandwidth selector has sample variability with
the same rate of convergence as hcv, but with a typically much smaller constant multiplier.

3-3-2. Improved Versions of BCV

Recall that 8;(k) in (3.14) does not include the diagonals “i=j” terms. The reason for this,
as argued in Scott and Terrell(1987), is that inclusion of the diagonal terms introduces unneces-
sary bias, # ' °K” % K”(0), which is not negligible since the optimal bandwidth is of order #™*.
However, this is true only when one sets g=fz\ , 1. e. uses the same bandwidth both for estimating
8, and f. Furthermore, it is observed that 0.(4) often has negative values(due to omission of
the diagonal terms), which is unreasonable since 6,>0.

The reintroduction of the diagonal terms is investigated by Sheather and Jones(1991), where
they show how the diagonal terms can be used to advantage to improve BCV(and other bandwidth
selection procedures) in terms of theory, computation and simulation practice. In fact, the use
of the non-cross-validatory estimators, gn(g) or ﬁm(g), is shown to improve the relative rate
of convergence #™ " of BCV to n»™%" with careful choices of g, even retaining the use of nonnega-
tive kernels L. It is pointed out that the use of higher order kernels L affords a further improve-
ment to #» *®, which is known to be the best possible based on the objective function (2.3).
Their simulation results also reveal that, on the whole, the non-cross-validatory bandwidth selec-
tors provide a worthwhile improvement over the cross-validatory counterparts.

As mentioned above, bandwidth selectos based on the asymptotic representation (2. 3) of MISE
have the rate of convergence # > at their best. This is because such bandwidth selectors aim
at hi, not ho, and the fastest relative rate of convergence of & to ks is # *°(see Lemma 5.2
of Park 1989, for example). In this respect, the asymptotic expansion of MISE to more terms
than is the case of (2.3) may afford improvement. Noting that the first part of (2.3) is a very
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good approximation of the integrated variance of ﬁ,(see Section 4 of Marron and Wand 1991,
for example), one might attempt to expand one more term only in the integrated squared bias,
which results in

AMISE(h) = (nh) "R(K) + o0,/ 4— hoédx0:/ 24. (3.15)

Hall, Sheather, Jones and Marron(1991) pursue this approach. They showed that any of
the estimators of 8; and 0, defined in (3.1) —(3.4), ensure the fastest n~** relative rate of
convergence to k, for the bandwidth which minimizes the corresponding estimated AMISE(h).
Furthermore, it can be shown that their bandwidth selector achieves the best constant also.
For this, L needs to be of order 6 when a cross-validatory estimator of 9. is used, while a
fourth order kernel is sufficient for the non-cross-validatory counterpart. As discussed above,
here also, non-cross-validatory estimators are preferred for their practical performance.

The two major weeknesses of this approach are the fact that two bias terms are needed in
the AMISE expression, and also the requirement of higher order kernels. Marron and Wand
(1991) observed from MISE and AMISE comparsion that there is very little to be gained in
practice through the use of the: extra bias term. Since practical implementation requires the
addition of noise through estimation of the extra quantity 0, it is highly unlikely that there
is net gain from inclusion of this extra bias term. This fact has been born out in the simulation
study of Hall, Sheather, Jones and Marron(1991).

These two objections can be overcome by means of bandwidth factorization, the idea of which
was illustrated using SCV criterion in Section 3.2.4. In fact, the same choice g=Cn %172,
as of the bandwidth factorized SCV, if used for 8.(or B.) being plugged into AMISE in (2.3),
gives the same type of cancellation, and again results in an »n~* rate of convergence. As in
the case of SCV, this also needs only a nonnegative kerenel in the pilot estimator 8,(or Gz)

3-3-3. Solve-the-equation Methods

The so called “solve-the-equation” methods are closely related to BCV. Here, we still work
with AMISE in (2.3) but minimization with respect to k, yielding the usual formula

=[R(K) / (cx'8:)1°n~", (3.16)

is (;\\One prior to estimation of 8.. The most primitive approach in this direction is to plug 62(12)
or 8.(h), which uses the kernel K, into (3.16) and then, setting %=}, solve the equation

h=[RK) / (o 8:(h))] 5. (3.17)

The original idea of this approach is due to Scott, Tapia and Thompson(1977) and its finite
sample properties were investigated by Scott and Factor(1981). The relative rate of convergence
of this bandwidth selector to /4, is known to beof order #™*"*(see Jones and Kappenman 1991,
for example).

A more effective method was introduced by Park and Marron{(1990), the essential idea of
which is due to Sheather(_1983, 1986) where the case of pointwise density estimation is conside-
red. The idea is to use bandwidth g, different from 4, in estimating 8, but in the form of
a reasonable representation in terms of k. Using such a representation g(k), say, Park and
Marron’s bandwidth selector is taken to be the root of the equation

h=LR(K)./ {cx8g())} 17 n~". (3.18)

This bandwidth selector is known to have a rather fast #™*'" relative rate of convergence, and
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have good finite sample properties, compared to CV and BCV.

Effectiveness of the non-cross-validatory estimators 6, and 02, discussed in the previous section,
still applies to the present case. It was observed by Sheather and Jones(1991) that, when one
use non-cross-validatory estimators with an appropriate representation for g, the relative rate
of convergence can be improved again to ™", Finite sample property of this bandwidth selector
was compared with Park and Marron’ s selector and Sheather and Jones’ s improved BCV version.
The results indicate that it is better than both of them in all settings considered in the simulation
study.

One may think that the bandwidth factorization ideas may be applicable to the above so-
Ive-the-equation methods for #»™Y? rate of convergence even with nonnegative pilot kernel estima-
tors. To say the truth, the same set of ideas do not work in the same way to the solve-the
equation methods. The reason for this is that the cancellation effect, which is the key to n™ "
convergence, only applies to those methods which involve minimization.

3-3-4. Chiu’s Adjusted Plug-in Bandwidth Selector

The adjusted plug-in method, proposed by Chiu(1991), is very similar to the method of Hall,
Sheather, Jones and Marron(1991) in that it is based on two term bias expansion of MISE(4).
As the stabilized bandwidth selector, this is also based on Fourier transform methods. In particu-
lar, note that

6= (2m)7 [ A*| (W) 1%\

and E | $Q0) 1?=n"n—1)""1 ¢(A) 1*+n"". By the similar reason discussed in Section 3.2.5,
a potentially good estimator of 8, is given by

&=n"" [ 2 | () 12—1/n}d
where A is defined in Section 3.2.5. This gives a bandwidth selector
he=[R(K) ./ (i8:) 1/ *n™ 17",

However, as discussed in Section 3.3.2, this bandwidth aims at 4, which itself converges
to &, at only the rate n *”°. For this reason, /e is adjusted according to inclusion of the second
bias term in the MISE expansion, yielding the bandwidth selector

har= b+ A, () / Axhs)
where
A(B) = 2am) " w hoide [ AT | Q) 12—1,/nldr
and
AR =0 W0 /4+n" ' RK) —n'°A,(h).
Chiu(1991) showed that A:» and the stabilized bandwidth selector have the same limiting distribu-

tion.

3-4. Pilot Estimation

Most of the bandwidth selectors, which have relative rates of convergence faster than »™ ",

require tuning for their effective use. For example, one needs to decide which constant C to
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use to implement the bandwidth factorized SCV methodlogoy. This is particularly important here
since the fast #™*? rate of convergence relies upon the use of proper tuning constant C. Of
course, there is a theoretically optimal choice of C which ensures the desired rate of convergence.
However, it depends on the unknown f in temrs of 9,’s, so is unavailable. Another example
in this direction is that effective representations g(h), ensuring the desired rates of convergence
of the solve-the-equation bandwidth selectors, are in the form of Ck* with C depending on 8.’ s.

A simple means of doing this tuning, in real data situations, is to use these best tuning values,
but with the unknown functionals replaced by some reference distribution counterparts. An often
considered choice of reference distribution is the normal distribution with mean zero and an
estimated variance (for scale invariance reasons). This reference distribution approach is good
enough for the asymptotic performance, in terms of rate of convergence, of all the bandwidth
selectors, discussed above, except the non-cross-validatory bandwidth selectors(ircluding the
bandwidth factorized SCV), where the best constants C are chosen to cancel bias terms.

However, even if the normal reference distribution approach does not alter the asymptotic
performance, one may have qualms when the data have a distribution that is quite far from
the normal. Furthermore, it has been seen that quite often, the reference distribution does
not provide adequate tuning of these bandwidth selection methods. This motivates more careful
tuning, through estimation of the unknown 8, s. This is particularly important for the non-cross-
validatory methods. In fact, such methods'need some sort of consistent estimation of the unknown
constants to enjoy the full advantages of reintroducing the diagonal terms. However, this entails
other difficulties, because these pilot estimates of 8.” s have bandwidth that need to be selected.
As these bandwidth depend asymptotically also on 6,’ s, a simple approach is to use the reference
distribution at this stage. However, it has been seen that, in some situations, the reference
distribution still has too strong an effect on the original tuning process. An obvious idea is to
iterate the pilot estimation process by estimating 8.’ s needed, and only using the reference
distribution at some final step where its effect has finally become negligible. See Park and Marron
(1991) for further discussion of this issue.

4. Transformation Methods

So far, what we have discussed is the bandwidth selection problem for the global bandwidth
kernel density estimator. A drawback of this estimator is that it performs quite poorly when
the true density has features that require far different amount of smoothing at different locations.
Silverman(1986) discusses nearest neighbor kernel estimators and adaptive kernel estimators
which use variable amount of smoothing. Recently, several promising and intuitively appealing
methods have been proposed in this direction, which are based on trnasformations of original
data. The essential idea is to first transform the data, X; from f;, to Y;=a(X,) where a is a
smooth and monotone function. The function « is chosen so that, for the density of Y,

£y s o) =£fa () da ') dy),
a global bandwidth is more appropriate. The kernel density estimator

j:;(y sah)=n"! _‘2}1 K.(y—Y)

is then back-transformed by change-of-variables to an estimator of f; :
~ A
£ a,h)=flalx) s a, o (x).
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The transformation ideas in density estimation are first introduced by Wand, Marron and
Ruppert(1991). They worked with positive, skewed data, and considered a two-parameter shifted
power transformation family, from which a is chosen. An effective method for selecting a, which
is in some sense optimal, was proposed together with suggestion of a data-driven bandwidth
selector for fr. An empirical assessment of this methodology is done by Park, Chung and Seog
(1991). From their simulation study, it is observed that the method works quite well in general,
but not so good(even worse than the untransform estimator) for the populations with relatively
high density near their support boundaries. This difficulty was resolved by making a fixed prelimi-
nary shift transformation.

Ruppert and Wand(1991) dealt with the problem of estimating an approximately symmetric
probability density with high kurtosis. Note that this kind of densities also are estimated poorly
by a global bandwidth kernel estimator since good estimation of the peak of the distribution
leads to unsatisfactory estimation of the tails and vice versa. A two-parameter convex-concave
transformation family was considered here since a convex-concave transformation{convex on the
left half-line and concave on the right half-line) has the effects of taking probability mass proposed.
Their simulation results confirm the superiority of the method over ordinary untransform kernel
estimation.

A nonparametric way of choosing a transformation a was proposed by Ruppert and Cline(1991).
The idea is first to transform the original data using a smooth estimate of their cdf. The transfor-
med data is further transformed by the inverse cdf of some target distribution, such as the
uniform or normal distribution. This allows one to think of the final transformed data as being
a random sample from the target distribution under consideration. Good theoretical properties
and practical significance of this method were observed.

5. Future Research

It should be clear from the above that the field of bandwidth selection in density estimation
has been progressing very rapidly in recent 3 or 4 years. While many methods have been propo-
sed, thete is still room for improvement. Two important open problems in global bandwidth
kernel estimation are : 1. Is there any bandwidth selector which has the fastest # 2 rate of
convergence together with the best constant multiplier, but using only nonnegative kernels at
all stages of the selection process ? Recall that the improved BCV proposed by Hall, Sheather,
Jones and Marron(1991), and the two Chiu’s selectors attain the best rate and constant. But
their methos rely upon the use of higher order kernels at functional estimation stages. On the
other hand, the bandwidth factorized SCV uses nonnegative kernels at all stages and achieves
the best rate, but does not have the best constant. 2. How may times does one need to iterate
the pilot estimation process by estimating the integrated squared density derivatives 7 Neglecting
the computational aspects, the crucial issue is a need to balance the reduction in bias, from
using higher stages, with the increased variance, which higher stages entail.

The field of transformation based variable bandwidth kernel density estimation is in its infancy.
None of the methods proposed so far has emerged as clearly superior, and there is much compari-
son to be done, and many other possibilities to be investigated. Also, the high technologies
developed in density estimation setting may be carried over to the related fields, such as regression
function, spectral density and gquantile function estimation. Extension to the multivariate case
is another possibility.
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Discussion
Ja-Yong Koo*

Park deserves commendation for the excellent expository review in the present paper. I offer
two comments at first.

1. In a mathematical treatment of density estimation, it is convenient to use integrated squared
error f (f—f)* as a measure of inaccuracy. But this measure does not reliably reflect qualitative
fidelity. See Fig. 1 of Kooperberg and Stone(1990). Basically most bandwidth selectors use
ISE or MISE as their motives. Such selectors may not reliably reflect qualitative fidelity and
thus we need to check their performance by pictures.

2. Most data analysts are content with IBM PC and do not want to go CRAY. Is there any
study on computational problem of selectors? On the other hand, one basic assumption for
selection methods is that f is twice differentiable. Practically, however. we don’t have such

* Hallym University
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information beforehand. Thus a selection method may not work well if it is derived under a
specific smoothness assumption. One nice feature of the least squares cross-validation is that
it does not depend on any smoothness assumption. A simulation study would be very useful
on the performance of selectors for a variety of class of densities, say, bimodal, skewed, unsmooth
densities.

Recently I have been working on a different approach to fitting more or less the same class
of densities f but using polynomial cubic splines to estimate log(f) by maximum likelihood estima-
tion. In order to avoid artificial end effects of polynomial fits, the splines are constrained to
be linear to the left of the first knot and to the right of the last knot. To aveid multiple representa-
tion of ¥, one linear constraint is imposed. Thus, if there are N knots, there are N+4 degrees
of freedom for the unconstrained spline and N—1 degrees of freedom for the estimate. This
approach is referred to as the logspline density estimation to distinguish it from the smoothing
spline approach favored by Wahba and others in which smoothing is achieved by a roughness
‘penalty instead of by confining attention to spline models with a modest number of degrees
of freedom. Preliminary study on the asymptotic optimal rules for selecting N based on the
data is currently on the way.

It is claimed that the relative rate of convergence of selection rule based on AIC for Ny, which
is an analogue of ko, is of order » . This phenomenon also happens to the kernel density
estimation. Another claim is that this interesting rate » ™ is best possible for a variety of
density estimation techniques, not just for kernel density estimation.

In numerical implementation, one important problem is the dependence of knot placement.
One remedy is this—put down many knots. Do the logspline density estimation. Now delete
least contributory knots from the fit. Continue the deletion under the best fit is found. I have
implemented this idea using B-splines. This procedure has the effect of using a locally adaptive
window size—the feature that made supersmoother in regression problem so attractive. One
interesting featurue is that this method is not designed to handle a specific feature of unknown
density. The first two transformation methods in page 14-15 have a specific goal. One procedure
designed to handle positive skewed data may not work well for symmetric density with high
kurtosis. I wonder if Ruppert and Cline(1991) have done such work.
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Myoungshic Jhun'

Park has provided a successful updated introduction to the data-driven bandwidth selection
in kernel density estimation. Certainly, we thank for his work. Actually, bandwidth selection

#* Korea University
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is a very crucial and popular problem in the most of smoothing techniques. Since his paper
is a kind of survey for recents theoretical results mainly on gloval choice of bandwidth for L?
—norm, [ would like to discuss about some other aspects.

L'—norm

In estimating density function f(x) by kernel estimator f.(x), as a loss, we may consider
IAE (integrated absolute error)

[ 10 —f(0 | dx

By using IAE, we may have some advantages including very natural and geometric interpreta-
tion and invariance property under rich class of transformations. However, mathematically it
is hard to track. Maybe, that’s why not so many works on this direction. But, asymptotically
we can derive MIAE(Mean IAE) as following. Let, K.=[ x®K(x)dx and 1K)*=[ K*(y)dy. Then,
for h=cn V5,

Z.(x,0)=n*[f,(x) —f(x)] — normal (¢K.f"(x)./2, fx)1K|?).
Therefore, we can have

K "
E[ ol 60— ldx = K [ w[(cm/@f(l)) 6| ]\/f(x) dx (1)

where y(y)=E | Z+y | with Z~N(0,1. Devroye and Gyorfi(1984) obtained the upper limit
of the LHS of (1). But, we way find c=c(f) minimizing the limit, which is quite different
from minimizing Devroye and Gyorfi’ s upper limit. Fortunately, RHS of (1) is a convex function
of ¢ so we may use bisection algorithm to find the minimizer say c*(f). Now, for given data
X1, Xz +, X, we can have a initial estimator f,(x) and use the bandwidth h*=c*(f)n™"".
In fact, c(f) is continuous for f in a suitable metric space consists of density functions and we
can have asymptotic results for the choice h*=c*(f.)n"**. For details see Woodroofe and Jhun

(1988).

Variable Bandwidth

The idea of varing bandwidth to be larger in regions of data sparsity and smaller in regions
where the data is plentiful has been proposed in the hope of producing less regged estimates
of density. Our variable kernel density estimate will take the form

1 1 ~X
fro(x) = ;ZEK(X I )

where h=hf(X) ™ with F(X) is some initial estimate of density at X;, for example by a fixed
kernel density estimate. h is the smoothing parameter and represents the overall amount of
smoothing and @ is the sensitivity parameter representing the degree of adaption to sparsity.
Proper selection of h and « is key to getting good variable kernel density estimates. See Silverman
(1985) for details.

In order to investigate the behavior of the estimator over simultaneously varying choice of
o and the bandwidth, a simulation study was carried out. We computed the estimate over a
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20X 20 grid of a.Xh, 100 replications were made for sample size 50 and 100. Test distributions
are (1) Standard Normal ; N(0,1), (2) Bimodal Normal ; 1./2N(—1,1/49)+1/2N(1,1/4),
(3) Contaminated Normal; 12N(0,4)+12N(0,1.74), (4) Standard Lognormal, (5) Cau-
chy, (6) Beta(2.2). We display our results in two ways. Firstly, the resultsare displayed in
Table 1 and 2. For ‘Fixed choice’ w give the fixed values of @ and h which minimise the
MISE over all replicatioins. For the ‘ISE choice’, the ISE is minimised over o and bandwidth
for each sample and statistics for these choices are given. In the column marked ‘corr’ we
give the correlation between the choice of a and h.

Table 1. Variable Kernel Density Estimates n=50

Fixed choice ISE choice
Distribution mise A“alh-)vha bw mise  se alpha sd bw sd corr
normal 0.73 0.20 0.90 0.46 0.05 0.30 0.25 0.90 0.30 -0.8
bimodal .91 0.30 0.50 1.71 0.09 0.23 0.47 0.58 0.27 0.9
cont. normal 0.88 0.70 0.55 0.62 0.05 0.69 0.24 0.53 0.13 -0.83
lognormal 2.93 0.10 0.41% 2.42 0.12 0.33 0.46 0.39 0.18 -0.79
cauchy 3.06 0.70 0.35 2.04 0.18 0.75 0.25 0.33 0.06 0.20
beta 0.83 -0.60 2.23 0.72 0.06 -0.44 0.55 2,11 1.02 -0.93

Table 2. Variable Kernel Density Estimates n=100

o Fixed choice o ISE choice
Distribution mise alpha bw  mise se  alpha  sd bw sd corr
normal 0.47 0.3 0.82 0.32 0.03 0.30 0.26 ~ 0.79 0.28 -0.91
bimodal 1.04 0.30 0.45 0.89 0.05 0.36 0.36 0.44 0.17 0.91
cont. normal 0.59 0.60 0.55 0.41 0.03 0.64 0.21 0.51 0.12 -0.80
lognormal 1.5 0.20 0.33 1.68 0.08 0.30 0.41 0.32 0.12 -0.65
cauchy 1.52 0.60 0.33 1.03 0.08 0.64 0.21 0.31 0.05 0.38
beta 0.53 -0.50 1.65 0.44 0.03 -0.40 0.54 176 0.95 -0.92

Secondly, we give contour plots for sample size 50 of the IMSE over a and the bandwidth the
heights of the contours are displayed on the plots. See Fig. 1.

The optimal choice of a varies greatly. It is large for the contaminated normal and cauchy,
our long tailed distributions. It is quite negative for the beta. This most interesting since negative
choices for a would not seem reasonable at first glance. However, with a little thought, one
can see how this is the reasonable for the beta(2,2). On emight expect the same effect for
a uniform distribution. Note also that the sample standard deviations on the choice of o are
relatively large. These observations lead us to propose a database method of simultaneous selection
of a and bandwidth. A marked negative correlation is shown between choice of a and bandwidth
except in the case of the Cauchy. Of course we know that o and bandwidth are linked in some
non-simple way but it is curious that the Cauchy should behave in so different a manner. The
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contour plots give some intereting shapes. Convexity is not quite there which may lead to some
problems in some methods of data-based selection of the smoothing parameters. Note the peculiar
eifects as a becomes negative. The MISE’ s of the ISE choices show that, if we can only choose
a and the bandwidth well, we may be able to obtain superior estimates. For details see Faraway
and Jhun(1988).
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Yunkee Ahn* and Tae-Yoon Kim™*

Byung U. Park’s paper is excellent survey and thought provoking paper about the data-driven
bandwidth selection problems. Recently, noticeable progresses have been made to obtain better
data-driven bandwidth selector. In this discussion, we will mainly focus on fundamental issues
about kerne! density estimator, its data-dependent bandwidth selector, cross validation method
and the case of dependent variables.

Kernel Density Estimators

In kernel density estimator, the choice of smoothing parameter h is very critical issue. It
is well known that the choice of bandwidth determines and controls the smoothness of the data.-
In this sense, the choice of bandwidth could be considered to select the density model to be
imposed on the data. Indeed, small h imposes a complex model while large h imposes a smoothing
model on the data. The condition always referred for kernel density estimation to be effective
is that h—>0 as n— o, which implies that very complicated model is desirable with addition
of data. Recall that there would be effectively no bias if no model (complicated model) is imposed.
However, nh—> e implicitly suggests that we still favor somewhat smoothing model.

We also would like to mention one of the interesting features of kernel estimation. That is,
kernel estimations presents the model in terms of a control parameter h and thus requring no
effort to estimate parameters in the selected model. This gives extensive, leeway for us to select
the appropriate model from infinitely many candiates even with one data point even though we

* Department of Applied Statistics, Yonsei University
* * Department of Statistics, Keimyung University
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need more data than number of parameters in most statistical methods.

It is well known that the choice of kernel is minor matter in selecting optimal bandwidth.
But our true object of density estimation is to find the estimator which is close to true density
not just finding bandwidth. In this sense, Samiuddin and El-Sayyao(1990) have shown that
we can improve estimation by using Epanzchnikov kernel for any fixed bandwidth in admissibility
sense. Thus we suggest the density estimation should be considered as two-stage procedure
by using proper kernel first and then optimal bandwidth.

Cross —Validation Technique

Until recent times, many seemingly prom: .ing methods have been presented to estimate smoo-
thing parameter h. Our main interest here goes to cross validation which have attracted many
statistical analysts for its practical convenient use. However, recent investigations show that
least square cross validation is subject to sampling variability in the sense that for different data
sets from the same distribution will typically gives much different answers. Thus kernel estimaor
with cross validation bandwidth selector couldn’t entertain the expected fast convergence rate
to true density f, n™** if n is not big enough.

In Park’s paper, there is not enough discussion about the cause of sampling variability which
cross validation suffers from. More intuitive illustration of the cause would be helpful to unders-
tand the discussed methods. One may mistakenly think that a long tail of true density may
be main reason of smapling variability. However, from his paper it seems that sampling variability
is a inherent drawback of cross validation.

Basic spirit under discussed methods is to smoothe cross validation to reduce the sampling
variability whether AMISE based methods or MISE based methods. Very often than not, these
smoothing tuning procedure of cross validation require pilot estimations and it may cause difficulty
to wide use of proposed methods. Therefore, it would be desirable if this tuning procedure
could be done without much effort, e.g. any convenient estimate can be used. As another method
of smoothing cross validation, Marron(1987) proposed partitioned cross validation(PCV) for ker-
nel den§ity estimation to eliminate the sample noise of cross validation. The idea of PCV is
to split the observation into g subgroups by taking every g-th observation and to calculate the
ordinary cross validation score CV,.(h) of the k-th subgroup of observations, k=1, 2, - g
and minimize the average of these score functions

V(D) =g kz CV..(h).
=1

The minimizer of CV*(h) is denoted by hecv. Since heev is appropriate for sampled size only
n/g, the partitioned cross-validated bandwidth is defined to be the rescaled g™ hecv.

One of active statistical areas where correct density estimation is mecessary(but not sufficient)
is discriminant analysis. Kullback-Leibler loss is employed as a popular measure of distance
in discriminant analysis. Log likelihood cross validation has been considered to be a good estimate
minimizing Kullback Leibler loss, L(f,2)=[f(x) log{f(x).”/g(x)} dx. Here, loglikelihood cross
validation -is defined to be

n' T log £4(X)
i=1

However, it has been pointed out that the loglikelihood cross validation are profoundly influnced
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by tail properties of the kernel and of the unknown density. Hall(1987) shows that a kernel
with a thick tail smoothe the behaviour of loglikelihood cross validation and thus minimizing
the loglikelihood across validation over h achieves the minimum of Kullback-Leibler loss when
the underlying density has a thick tail. Our question is that some other techniques may be
developed to smoothe the behaviour of loglikelihood cross validation.

Kernel Estimation with Dependent Variables

As another field of possible future studies, we like to add one area which is attracting a lot
of research interests. It is kernel density estimation for dependent variables. As obvious applica-

tion is to the analysis of time series data. Unlike density estimation for independent r.v.’s,
it doesn’ t have many classical density estimation method avilable. So it is open area nonparametric
density estimation is expected to work well. Strong consistency for various delta sequence estima-
tors with dependent data including Kernel estimator have been established(e.g., Collomb and
Hardle(1986), Robinson(1983) and Troung and Stone(1988))but still many research is underway
to improve those results.

Bandwidth selection problem has been addressed by Hart and Vieu(1990) for density estimation
and T. Kim(1990) for regression estimation. Difficulty in dependent variable cases arises from
the fact that we should handle the dependence. Since dependence of data used to influence
variance, we are likely to draw unstable estimates. Also the dependence cause troubles for
the bandwidth selectors designed for independent observations. For instance, if the observations
are positively correlated, then cross validation will produce under-smoothed estimates. On the
other hand, if the observations are negatively correlated, then cross validation will produce
oversmoothed estimates. See Hart and Wehrly(1987), for a detailed discussion of dependence
effect on bandwidth selection.

To handle the dependence, several methods have been suggested but each has its own drawba-
cks. One adjustment is modified cross validation(MCV) and is simply the “leave— (2j+1) —out”
version of cross—validation. See Hart and Vieu and Hardle and Vieu(1988) for earlier results
on the application of this method. But the problem is how many data points(choice of j) should
be deleted, which adds another difficulty to our estimation problem. Another possibility is to
use PCV discussed above. Problems with PCV is that it is so effective at removing the dependence
i.e., it handles dependent data as independent one and thus resulting much biased bandwidth
selectors. See Chu and Marron(1988). M
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Byung H. Kim" and Kyung J. Cha""

It is a pleasure to read this introductory pap‘ex: which introduces several methods for global
bandwidth kernel estimator. Also, it is a pleasant news that there is a considerable progress
on the problem of an adaptive(i. e., depending only on the data and then directly computable
in practice) bandwidth selection in kernel density stimation.

Since the paper is to provide an introduction for global bandwidth kernel estimation, we would
like to make a few comments and to introduce another method which is under investigation
by several statisticians.

As the author pointed out, the choice of the bandwidth is the central issue in the application
of the kernel density estimation. Even though the choice of the optimal bandwidth that minimizes
MISE or AMISE is the main goal of the kernel estimation, selecting a kernel function has been
discussed by a few authors. Results in (Gasser and Miiller(1979)) reveal that the solution is
a quadratic kernel(i. e., Epanechnikov kernel). Also, Benedetti((1977) pointed out the optimality
of the qudratic kernel for nonparametric regression.

However, Silverman(1986) pointed out that there is very little to choose between the various
kernels on the basis of mean integrated square error. Recently, Eubank(1989) discussed the
problem of selecting a kernel for working on nonparametric regression. He concluded that the
actual choice of a kernel is not very important on the basis of mean square error.

In Section 4 the author mentioned the boundary problem. The boundary problem is such
that x is less than the bandwidth h, thus the scaled support of the kernel is no longer completely
in the interior. Let us look at E[fi(x)] and Var[f,a(x)]. By simple Taylor expansions,

EL6(01=[* k(D{£(0) — 20f'(x) + [(z)*/2]f(x0 } dz+ (1)
1
Varlfi(x)]=— 0 kz(z)dz+o(31h~ )

where q=xh and assuming that there is a boundary effect. Since the symmetry of a kernel
is lost by the boundary effect, [%k(z)dz#1 and [zk(z)dz0. Therefore, we could not get the
same  rate of convergence as the methods introduced in the paper. It would be suggested that

* Hanyang University
* % Sejong University
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the modification at the boundary is necessary to have decent approximation of the true density
function.
Without considering boundary effect, lets loock at asymptotic mean integrated square error

because the bandwidth that minimizes AMISE provides a decent approximation to ho as the auther
pointed in Section 3.3. Then,

AMISE (h) = Var[f,(x) ]+ Bias£,(x) ]
1 1
== [K®Odt+7 h{[xk()dx}*{ [fr(0%dx} )
Therefore, by using the lemma 4a of Parzen(1962), the optimal bandwidth which minimizes
the AMISE is

_ . JkGdx ;
hop= [n{fxzk(x)dx}Z{ff”(x)zdx} 1
Also, by plugging he into (1), it can be easily shown that
Varl fun(x)]1=4 - Bias fun(x)] . (2

From equation(2), it can be seen that the optimal bandwidth balances the asymptotic Var[fi(x)]
and 4 - Bias’[f.(x)].

For some positive number A and B, it can be rewritten

A
Varlf(x)]1 ~ 3,
Bias?[f,(x)] ~ Bh?

for large n. Then the problem that we need to overcome is how to estimate A and B. There
are several ways to estimate A and B, such as robust M-estimation and the least square method.
Let us suppose that the least square method is employed. Then by substituting estimates into
and solving equation(2), we find the adaptive bandwidth as

A
h= {4nB }1/5'

Eubank and schucany(1990) developed the local version of adaptive bandwidth selection technique
by using this method which can be directly extended to global bandwidth kernel estimation.
In order to estimate A and B by the least square method, Eubank and Schucany used the grid
of bandwidths. Cha and Schucany{1990) show that permissible values of the rate of convergence
for grid of bandwidths are from 1,77 to 1./5 by simulation study. Thus, when the rate of conver-
gence for grid of bandwidths is 4725, the ratio of the bandwidth estimate to the optimal bandwidth
converges to one at the rate n™*"* as Hardle, Hall, and Marron(1988) showed for cross-validation
global bandwidth estimates.

With all of the above, it seems to be reasonable to find the bandwidth that minimizes criteria
such as MISE, AMISE or mean square error. It also would be possible to extend cross-validation
to local bandwidth kernel estimator. Hall and Schucany(1989) develop a local cross-validation
algorithm. They propose a local version of square error cross-validation, suitable for estimating
a probability density at a given point and show it is asympotically optimal in the sense of minimizing
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mean square error.

We would like to end this by thanking to the author for opportunity to read this paper. As
statisticians who are interested in this area, we also appreciate his time to spend for introducing
new areas.
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Rejoinder

First of all, I would like to thank Professor Yunkee Ahn for giving me an opportunity to write
a survey paper on recent developments in bandwidth selection. I also thank all the discussants
for their efforts to have some healthy interactions.

Not all the issues raised by the discussants are responded since response to some of the comme-
nts goes beyond the scope of the present paper. I will respond to the four comments separately
in aribitrary order.

1.Koo

Koo points out that ISE and MISE do not reflect qualitative fidelity of density estimates. He
suggests that we need to check the performance of density estimates by pictures. In principle,
this is a good idea, but can not be accomplished in practice since we do not know the true
density. ISE and MISE also depend on the unknown true density, but the advantage of using
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these quantitative measures is that this type of dependency can be resolved by estimating the
related functionals.

Koo asks me whether there is any study on computational problems of bandwidth selectors.
There has been some study on this. One of the most frequently used and efficient algorithms
for calculating related quantities of kernel density estimates is the binned implementation introdu-
ced by Scott(1985). See also Silverman(1982), and Jones and Lotwick(1984) for algorithms
based on the Fast Fourier transform.

Koo says that one nice feature of the least squares cross-validation is that its derivation does
not depend on any smoothness assumptions on the true density. This is right, but this feature
is shared by other bandwidth selectors too, such as SCV. The real advantage of the least squares
cross-validation is that it is more robust(of course, at some cost in efficiency) than any other
bandwidth selectors, as pointed out in Park and Marron(1990), and reconfirmed in a recent
extensive simulation study conducted by Steve Marron.

Koo says something about logspline density estimation. It has been known that this type of
estimator, as well as kernel estimator, enjoys the asymptotically optimal rate of convergence
to the true density. One great advantage of logspline density estimator is that it is computationally
cheaper than kernel density estimator. However, compared to the latter, the former is less
intuitively appealing and relatively few theoretically justified data-based smoothing parameter
selection methods are available.

Finally, I would like to mention that the Ruppert and Cline(1991)’s transformation method
has a parallel advantage with the stepwise knot deletion procedure in that is is not designed
to handle a specific feature of the unknown density.

2. Jhun

Jhun makes out a case for L'~norm as a loss of density estimate. I agree that it has a natural
geometric interpretation and is invariant under some class of transformation. He proposes to
minimize the limit of MIAE to get a bandwidth, instead of minimizing the upper bound as was
proposed by Devroye and Gyorfi(1984). There are two real problems here. One is that minimiza-
tion of the limit is computationally too expensive. It actually involves double numerical integration.
The other is how to choose a pilot estimate fo. If we want to use another kernel density estimate,
we again need to choose a proper bandwidth at this stage. But I do not think there is any
objective method to choose a bandwidth for this pilot estimate since the quantity which we want
to estimate is too complicated, and it is an implicit functional of f.

3. Ahn and Kim

Ahn and Kim refer to Samiuddin and El-Sayyad(1990) arguing the importance of choice of
kernel function. In fact, choice of kernel function and that of bandwidth are coupled problems
and need to be considered simultaneously. Marron and Nolan(1989) consider canonical kernels
to uncouple these two problems. which enables us to choose a kernel function irrespective of
bandwidth. However, looking at AMISE, the performance of kernel density estimator is crucially
dependent on the choice of bandwidth, and the choice of kernel does not really matter, only
changing slightly the constant factors in AMISE (see Epanechnikov 1969).
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Ahn and Kim advocate use of the partitioned cross-validation proposed by Marron(1987). A
drawback to this approach is that we must decide on the number of groups to use, and this
problem seems to closely parallel that of smoothing parameter seiection. Also, it is known that
this bandwidth selector even with the theoretically optimal number of groups has a slow n™'*
rate of convergence to h,. One possible improvement suggested by N.I. Fisher is discussed
in Marron(1987), but the idea has not been analyzed yet.

4. Kim and Cha

Kim and Cha comment on the boundary effect which kernel density estimates often have when
the true density is supported by a finite interval. But the problem I raise in Section 4 is not
quite related to this. What I mean is that the method to select a particular transformation may
break down when the population has relatively high density near its boundary. The reason for
this is that this kind of populations often lead us to choose a transformation which is stringent
at the bounary, and this results in a density estimate with a big spike near the boundary. Kim
and Cha mention that the usual asymptotic results are no longer valid when the boundary problem
is present. I do not think so since the boundary problem is of finite sample matter, and is
gone as the sample size increases.
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