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Measures of two types of uncertainty that coexist in the Dempster-Shafer theory are overviewed. A
measure of one type of uncertainty, which expresses nonspecificity of evidential claims, is well justified
on both intuitive and mathematical grounds. Proposed measures of the other types of uncertainty,
which attempt to capture conflicts among evidential claims, are shown to have some deficiencies. To
alleviate these deficiencies, a new measure is proposed. This measure, which is called a measure of
discord, is not only satisfactory on intuitive grounds, but has also desirable mathematical properties. A
measure of total uncertainty, which is defined as the sum of nonspecificity and discord, is also
discussed. The paper focuses on conceptual issues. Mathematical properties of the measure of discord
are only stated; their proofs are given in a companion paper.'?
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1. INTRODUCTION

From the mid-seventeenth century (when the formal concept of numerical
probability emerged?) until the mid-twentieth century, uncertainty was conceived
solely in terms of probability theory. This seemingly unique connection between
uncertainty and probability theory, which was taken for granted for three
centuries, has only recently been challenged. The challenge came from several
mathematical theories, distinct from probability theory, which are demonstrably
capable of characterizing situations under uncertainty. They include: Choquet’s
theory of capacities,! theory of fuzzy sets,?? theory of fuzzy measures,?® theory of
random sets,'* possibility theory,>® theory of rough sets,'> O-theory,’? and the
Dempster-Shafer theory.'¢

An important aspect of every mathematical theory by which we conceptualize
uncertainty is the capability to quantify the uncertainty involved. This requires
that we can measure, in a unique and adequately justified way, the amount of
uncertainty involved in each possible characterization of uncertainty within the
theory.

Assume that we can measure the amount of uncertainty involved in a problem-
solving situation conceptualized in a particular mathematical theory. Assume
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further that the amount of uncertainty can be reduced by obtaining relevant
information as a result of some action (finding a relevant new fact, designing a
relevant experiment and observing the experimental outcome, receiving a requested
message, discovering a rélevant historical record). Then, the amount of information
obtained by the action may be measured by the reduction of uncertainty that
rosults from the action. In this sense, the amount of uncertainty (pertaining to a
problem-solving situation) and the amount of information (obtained by a relevant
action) are intimately connected. Furthermore, the amount of information con-
tained in a mathematical description of a problem solving situation may be
measured by the difference between the maximum and actual amounts of
uncertainty pertaining to the situation.

The nature of uncertainty (and the associated information) depends on the
mathematical theory within which problem-solving situations are formalized. Each
formalization of uncertainty in a problem-solving situation is a mathematical
model of the situation. When we commit ourselves to a particular mathematical
theory, our modelling becomes necessarily limited by the constraints of the theory.
Clearly, a more general theory is capable of capturing uncertainties of some
problem situations more faithfully than its less general competitors.

A measure of prebabilistic uncertainty was established by Shannon in 1948.'7
The issue of how to measure uncertainty in the various alternative theories was
investigated mostly in the 1980s.%'® It became clear by these investigations that
the Dempster-Shafer theory is capable of formalizing simultaneously two distinct
types of uncertainty. This contrasts with probability theory, within which only one
of these two types of uncertainties can be captured.

The purpose of this paper is to critically re-examine previous results regarding
the measurement of uncertainty in the Dempster—Shafer theory and propose a
solution to some unresolved questions. This re-examination applies also to
possibility theory, which is viewed here as a special case of the Dempster-Shafer
theory.

2. TERMINOLOGY AND NOTATION

In order to introduce relevant terminology and notation, we briefly overview in
this section basic properties of the Dempster-Shafer theory, possibility theory, and
probability theory. The overview is rather concise; we assume that the reader is
familiar with fundamentals of these theories at least to the extent at which they are
covered in the text by Klir and Folger.?

Let X denote a universal set under consideration, assumed here to be finite for
the sake of simplicity, and let P(X) denote the power of set of X. Then, the
Dempster-Shafer theory is based upon a function

m: P(X)—{0,1]
such that

m@Z)=0 and ¥ m(4)=1.

ASX

This function is called a basic assignment; the value m(A) represents the degree of
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belief (based on relevant evidence) that a specific element of X belongs to set A,
but not to any particular subset of A. Every set Ae P(X) for which m(4)#0 is
called a focal element. The pair (F,m), where F denotes the set of all focal elements
of m, is called a body of evidence.

Associated with each basic assignment m is a pair of measures, a belief measure,
Bel, and a plausibility measure, Pl, which are determined for all sets A€ P(X) by
the equations

Bel(4)= ) m(B), (1
Bs A

Pl(4)= Y m(B). ¥l
BrAwnD

These equations and the definition of the basic assignment form the core of the
Dempster-Shafer theory. This theory is most completely described by Shafer.'®
Belief and plausibility measures are connected by the equation

P1(A4) =1—Bel(A) 3)
for all A€ P(X), where A4 denotes the complement of A. Furthermore,
Bel (4) S PI(A) 4@
for all 4e P(X).

A belief measure (or a plausibility measure) becomes a probability measure, Pr,
when all focal elements are singletons. In this case, Pr(A)=Bel(4)=PI(A4) for all
AeP(X), which follows immediately from Egs. (1) and (2), and we obtain the
additivity property

Pr(Au B)=Pr(A)+Pr(B)—Pr(An B) &)

of probability measures. Any probability measure, Pr, on a finite set X can be
uniquely determined by a probability distribution function

p: X—[0,1]
via the formula

Pr(4)= Y p(x) (6)

xeA

From the standpoint of the Dempster-Shafer theory, clearly

p(x)=m({x}).
When some focal elements are not singletons, Eq. (5) bifurcates into the

inequalities
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Bel (A4 u B) 2 Bel (4) + Bel(B)—Bel (4~ B), M
Pi(A v B)SPI(A4)+PI(B)—P1(A ~ B). (8)

When all focal elements are nested (ordered by set inclusion), we obtain special
plausibility measures, which are called possibility measures (or consonant plausibi-
lity measures), and the corresponding special belief measures, which are called
necessity measures. A possibility measure, Pos, is conveniently (and uniquely)
determined by a possibility distribution function

r: X-[0,1]
via the formula

Pos (A4) =max r{(x) 9

xed

for all 4€ P(X). The corresponding necessity measure, Nec, is then determined for
all Ae P(X) by a formula equivalent to Eq. (3),

Nec(A)=1—Pos(A). (10)

As shown later, possibility distributions and basic assignments of nested bodies of
evidence are uniquely connected via Eqgs. (13) and (14).

A theory that deals with nested bodies of evidence in terms of possibility and
necessity measures is usually called a possibility theory. Possibility and necessity
measures satisfy the equations

Pos (A u B)=max [Pos(A), Pos(B)], (1)
Nec(A n B) =min [Nec(A4), Nec(B)]. (12)

Assume that X ={x,x,,...,x,} and let 4, c 4, - A4,, where A4;={x,,x;...,x},
i=1,2,...,n, be a complete sequence of nested subsets that contains all focal
elements of a possibility measure Pos. That is, if m(A4)#0 then Ae{A4,,A4,,...,4,}.
Let m;=m(A;) and r;=r(x;) for all i=1,2,...,n. Then, the n-tuples

m=(m;,my,...,m,),
P=(ry,ra.-. 1)

fully characterize the basic assignment and the possibility distribution, respectively,
by which the possibility measure Pos is defined. The nested structure implies that
rzri,, foralli=1,2,...,n— 1. Furthermore,
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r=3. m, (13

k=i
m=r—ri, (19

foralli=1,2,...,n, where r,,, =0 by convention.®

Possibility theory can be formulated not only in terms of nested bodies of
evidence within the Dempster—Shafer theory, but also in terms of fuzzy sets. It was
introduced in this latter manner by Zadeh.2? A fuzzy set is a set whose boundary
is not sharp. That is, the change from nonmembership to membership in a fuzzy
set is gradual rather than abrupt. This gradual change is expressed by a
membership grade function, u ,, of the form

#A: X_’[O’ l]v

where A is a label of the fuzzy set defined by this function within the universal set
X. The value y,(x) expresses the grade of membership of element x of X in the
fuzzy set A or, in other words, the degree of compatibility of x with the concept
represented by the fuzzy set. A fuzzy set A is called normalized when p,(x)=1 for
at least one xe X. If u,(x) S ug(x) for all xe X, then A is called a fuzzy subset of B.

An important concept associated with fuzzy sets is an a~cut. Given a fuzzy set 4
and a specific number a€[0, 1], the a-cut, A,, is a crisp (non-fuzzy) set

A,={xeX|u(x) 2a}.

The set of all elements of X for which u (x)>0 is called a support of the fuzzy set
A; it is usually denoted by supp(A).

Given a regular fuzzy set 4 with membership grade function g, (the range of u,
is [0, 1]), Zadeh??® defines a possibility distribution function, r,, associated with A
as numerically equal to u,, i.e.,

ra(x) = (x)

for all xe X; then, he defines the correspdnding possibility measure, Pos,, by the
equation

Pos ((B) =maxr 4(x)
xeB

for all BeP(X). In this interpretation of possibility theory, focal elements
correspond to distinct a-cuts 4 of the fuzzy set 4. This follows from the property
that A,< 4, when a> .

The Dempster-Shafer theory can be fuzzified. In its fuzzified form, the basic
assignment is a function

m: P(X)-[0,1},

where P(X ) denotes the set of all fuzzy subsets of X. This function must satisfy the
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same requirements for the extended domain P(X) as function m does for the
domain P(X). Plausibility and belief based upon m are expressed by the following
generalized counterparts of Egs. (1) and (2),

ﬁel(A)*.ZF 'F-(B)[l —mt:min(l — n4(x), u.(x))]. (1
Pi(4)= 'ZF m(B) [max min (u(x), u.(x))] 2)

where u,(x) and ug(x) are degrees of membership of element x in fuzzy sets 4 and
B, respectively, and F is the set of all focal elements (fuzzy sets) associated with .

3. MEASURES OF UNCERTAINTY IN THE DEMPSTER-SHAFER
THEORY

It follows from the nature of the Dempstcr—Shafcr theory that it subsumes two
distinct types of uncertainty. One of them is well characterized by the name
nonspecificity. It is now well established that this type of unoertamty is properly
measured by a function N defined by the formula

Nem= 3 md)log, 4], (19)

where |4| denotes the cardinality of the focal element A. This function, which was
proven umquc under appropriate requirements,® measures nonspecificity of a body
of evidence in units that are called bits: one bit of uncertainty expresses the total
ignorance regarding the truth or falsity of one proposition. The range of the
function is

05 N(m) Slog,| X|. (16)

Function N is connected with a simple measure of information (and uncertainty)
that was proposed within the classical set theory by Hartley in 1928.* He showed
that, given a finite set of possible alternatives, 4, the amount of information (in
bits), I(4), needed to characterize one of the alternatives is given by the simple
formula

I(4)=log, |4]. an

Function N can clearly be viewed as a weighted average of the Hartley
information for all focal elements.

We can easily see that function N has no connection with the probabilistic

measure of uncertainty, the Shannon entropy H, which assumes in the Dempster—
Shafer theory the form

H(m)=— Ex"l({x}) log, m({x}). (18)
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Indeed, all focal elements of any probability measure are singletons, which means
that |4|=1 for all AeF in Eq. (15). Consequently, if m defines a probability
measure, then N(m)=0. That is, probability theory is devoid of nonspecificity and,
hence, the Shannon entropy measures uncertainty that is of a different type.

It is well understood now that the probabilistic uncertainty results from
evidential claims focusing on disjoint subsets (singletons) and thus conflicting with
one another. The greater the lack of discrimination among the evidential claims
expressed by a probability distribution, the greater the conflict and, as a measure
of the conflict, the greater is the value of the Shannon entropy.

What is the generalized counterpart of the Shannon entropy in the Dempster—
Shafer theory? Thus far, two candidates were proposed:

E(m)=— Z m(A)log, P1(A), (19)
AeF

C(m)= — ZF m(A)log, Bel (A). (20)
Ae

Function E defined by Eq. (19), which is usually called a measure of dissonance (or
entropy-like measure) was proposed by Yager.?! Function C given by Eq. (20),
which is usually called a measure of confusion, was proposed by Hohle.® It is
obvious that either of the functions collapses into the Shannon entropy when m
defines a probability measure.

What do functions E and C actually measure? From Eq. (2) and the general
property of basic assignments (satisfied for every 4 € P(X)),

Y mB)+ Y mB)=1,

AnB=g AnB#AQ
we obtain
ﬂm=—ZMMb&P— Z_mm} (21)
AeF AnB={
The term
K(4)= Y mB)
AnB=

in Eq. (21) represents the total evidential claim pertaining to focal elements that
are disjoint with the set 4. That is, K(A4) expresses the sum of all evidential claims
that fully conflict with the one focusing on the set A. Clearly, K(4)e[0,1]. The
function

—log,[1-K(4)],
which is employed in Eq. (21), is monotonic increasing with K(A) and extends its

range from [0, 1] to [0, o). The choice of the logarithmic function is motivated in
the same way as in the classical case of the Shannon entropy.
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It follows from these facts and the form of Eq. (21) that E(m) is the mean
(expected) value of the conflict among evidential claims within a given body of
evidence (F, m); it measures the conflict in bits and its range is [0, log,|X|].

Functional E is not fully satisfactory since we feel intuitively that m(B) conflicts
with m(A) whenever B& 4, not only when B A= . This broader view of conflict
is expressed by the measure of confusion C given by Eq. (20). Let us demonstrate
this fact.

From Eq. (1) and the general property of basic assignments (satisfied for every
Ae (X)),

T mB)+ ¥ mB)=1,

BsA B%A

we get
Cimy=— Y, m(A) 1032[1‘ )X m(B)]- (22)
A&F BEA
The term
LA)= Y m(B)
BEA

in Eq. (22) expresses the sum of all evidential claims that conflict with the one
focusing on the set A according to the broader view of conflict: m(B) conflicts with
m(A) whenever B¢ A. The reasons for using the function

—log, [1-L(4)]

instead of L(A4) in Eq. (22) are the same as already explained in the context of
function E. The conclusion is that C(m) is the mean (expected) value of the
conflict, viewed in the broader sense, among evidential claims within a given body
of evidence (F, m).

Function C is also not fully satisfactory as a measure of conflicting evidential
claims within a body of evidence, but for a different reason than function E.
Although it employs the broader, and more satisfactory, view of conflict, it does
not properly scale each particular conflict of m(B) with respect to m(A4) according
to the degree of violation of the subsethood relation B< A. We feel intuitively that
the more this subsethood relation is violated the greater the conflict.

Hence, neither of the two functions, E and C, hitherto proposed as candidates
for measuring the mean value of conflict among evidential claims within each
given body of evidence is really acceptable on intuitive grounds. To alleviate this
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frustrating situation, we propose a new measure of conflict that is both intuitively
and mathematically sound.

4. NEW MEASURE OF CONFLICT

On the basis of our conclusions regarding the deficiencies of functions E and C as
adequate measures of conflict in the Dempster-Shafer theory, we propose to
replace them with the following function:

Dim)=— ¥ "'(A)lOSz[l“ Y., m(B) B;” ] (23)

AeF BeF

Observe that the term

Con(4)= Y m(B) B;A

BeF

in Eq. (23) expresses the sum of individual conflicts of evidential claims with
respect to a particular set A, each of which is properly scaled by the degree to
which the subsethood B< A is violated. This conforms exactly to the intuitive idea
of conflict that emerged from the critical re-examination of functions E and C in
the previous section. Let function Con be called a conflict. Clearly, Con(4)e[0,1]
and, furthermore,

K(4) = Con(A4) s L(A). (24)
The reason for using the function
—log, [1 —-Con(A4)]
instead of Con in Eq. (23) is exactly the same as previously explained in the
context of function E. This monotonic transformation extends the range of Con(A4)
from [0, 1] to [0, o0).
Function D, which we propose to call a measure of discord, is clearly a measure
of the mean conflict (expressed by the logarithmic transformation of function Con)

among evidential claims within each given body of evidence. It follows immedia-
tely from (24) that

E(m) = D(m) < C(m). (25)

Observe that |[B— A|=|B|—|A n B| and, consequently, Eq. (23) can be rewritten as

Dim)=— Y m(A)log, ¥ m(B) (26)

AeF BeF

AnB
B
From (25), it is obvious that
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Bel(4)s ¥ mB) AP <p1(a) @7

BeF

Function D is applicable equally well to the fuzzified Dempster—Shafer theory
provided that the cardinaliiv |A] of a fuzzy set A is defined by the formula

4= 3 nalx)

xeX
and the set intersection is determined by the minimum operator. In this sense,

AnB
S(B,A)= B
in Eq. (26) expresses the degree of subsethood, S(B, 4), of a fuzzy set B in a fuzzy
set A, as shown by Kosko.?

It is easy to see that function D measures the conflict of evidential claims within
each body of evidence in bits: D(m)=1 is equivalent to a full conflict between the
evidential claims regarding the truth or falsity of a single proposition. We have
also managed to prove that the function is additive (in the same sense as functions
E and C)? and that its range is [0, logZIX [J. The minimum is obtained for all
bodies of evidence with a single focal element; its maximum is obtained only when
m defines the uniform probability distribution on X. Proofs of these properties,
which are rather techmical, are a subject of another paper.'?

When we specialize to possibility theory and, hence, deal only with nested
bodies of evidence, the measure of discord, D, is still applicable, while the measure
of dissonance, E, is not. That is, nested bodies are consonant (in the sense of
function E), but they are not, in general, conflict-free (in the sense of the more
general function D). They are conflict-free only if they contain one focal element.
Since such bodies of evidence correspond to crisp sets, it seems that the measure of
discord might also play a role as a measure of fuzziness of normalized fuzzy sets.
This issue requires further investigation.

Using the notation introduced in Section 2, which is based upon the notion of a
complete sequence of nested subsets that contains all focal elements, it is easy to
derive the following possibilistic form of the measure of discord:

D(m) = -—'2_: m,log2< i m;+ f: m,é.). (28)

i=1 i=1 j=i+1

Furthermore, using Eq. (14), we obtain

.1 . r
D(m)s—igl (f,-—"i+l)l°g2[l~tj.¢+1 (Fiﬁ;] @

5. TOTAL UNCERTAINTY
As previously suggested by Lamata and Moral'® we may define the amount of
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total uncertainty in the Dempster-Shafer theory as the sum of amounts of the two
types of uncertainty that coexist in the theory. While Lamata and Moral proposed
to add the values of nonspecificity and dissonance, we propose, as a natural
consequence of our discussion in Section 4, to add the values of nonspecificity and
discord. Hence, we define the total uncertainty, T(m), for any given body of
evidence (F,m) as the sum

AeF Z m(B)

Tim)=Nem) + Dm) = ¥ mi{A4)log; ——4L_— (30)
BeF ?

It is our conjecture that the range of this function is [0,log,|X[] and that it
possesses desirable properties such as symmetry, expansibility, additivity, and
subadditivity. Although there is ample evidence to support this conjecture, relevant
proofs necessary to convert it to a theorem are yet to be done. These proofs, if
accomplished, will make function T as well justified as a measure of uncertainty in
the Dempster-Shafer theory as the Shannon entropy is in probability theory.

Observe that T(m)=0 whenever m({x})=1 for some xeX. The presumed
maximum, T(m)=log,|X|, is not unique; it is obtained not only for mX)=1 and
for the uniform probability distribution on X, but also for other bodies of evidence
that seem to possess certain symmetries. For example, the maximum is obtained
for the body of evidence defined on X ={1,2,3,4} whose focal elements are {1,2},
{2,3}, {3,4}, {1,4} and the values of the basic assignment are uniform (1/4 for each
focal element).

6. CONCLUSIONS

The Dempster~Shafer theory and one of its special branches, possibility theory,
have become viable alternatives to probability theory, which appear to be more
appropriate for dealing with some problem-solving situations involving
uncertainty.’!*> We have argued elsewhere that the proper way of managing
uncertainty in problem-solving situations is to employ two complementary princi-
ples, the principle of minimum uncertainty and the principle of maximum
uncertainty.”® However, to make these principles operational, relevant uncertainty
must be adequately quantified.

We are sufficiently confident that the measure of discord, which is proposed in
this paper, together with the well established measure of nonspecificity, quantify
adequately the two types of uncertainty that are captured by the Dempster—Shafer
theory. These measures are now justified, both on intuitive and mathematical
grounds, equally well as the Hartley measure in classical set theory and the
Shannon entropy in probability theory.

The measure of total uncertainty, given by the sum of discord and nonspecifi-
city, requires further mathematical investigation. If our conjecture regarding
mathematical properties of this function is proven correct, which we consider
highly plausible, the function will undoubtedly play a particularly important role
in the principles of minimum and maximum uncertainty.
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