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A Goodness — of — Fit Test for the Exponential Distribution
with Unknown Parameters

Bu-Yong Kim*

ABSTRACT

This article is concerned with the goodness—of—fit test for exponentiality when
both the scale and location parameters are unknown. A test procedure based on the
L:—norm of discrepancy between the cumulative distribution function and the empirical
distribution function is proposed, and the critical values of the test statistic are obtained
by Monte Carlo simulations. Also the null distributions of the proposed test statistic
are presented for small sample sizes. The power of tests under certain alternative
distributions is investigated to compare the proposed test statistic with the well—known
EDF test statistics. Qur Monte Carlo power studies reveal that the proposed test statistic
has good power properties, for moderate—to—large sample sizes, in comparison to

other statistics although it is a conservative test.

1. Introduction

Test for exponentiality is a problem of great importance in reliability theory and survival analy-
sis. In practical applications such as Military Standard 781(U.S. Department of Defense 1986,
reliability test plans and analyses are wholly based on the assumption that times between failures
of a weapon system follow the exponential distribution. Montagne and Singpurwalla(1985) investi-
gate the robustness of the sequential probability ratio test procedures of Military Standard 781,
and address some serious problems which may occur when the underlying distribution of times
between failures is not exponential. In this context, it would be desirable to make a thorough

investigation of exponentiality prior to the analyses or assessments of the reliability testing data.
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There are several types of goodness—of —{it tests which can be applied to the test for exponen-
tiality. Especially, the empirical distribution function(EDF) tests are widely used. However,
the well—known EDF tests such as Kolmogorov— Smirov(KS), Kuiper(K), Cramer—von Mises
(CM), Watson(W), and Anderson—Darling(AD) test procedures are correctly applicable only
when the hypothesized distribution is completely specified. For unspecified distributions cases,
certain estimates from the sample data may be used instead of parameters. It is worth noting,
however, that even if the unknown parameters are estimated efficiently, the asymptotic distribu-
tions of these test statistics may not be the same as they are when parameters are known. There-
fore the critical values given by the authors are no longer valid for unknown parameters cases.

Lilliefors(1969) employs Monte Carlo methods to construct the table of critical values for the
Kolmogorov—Smirnov test when the mean of an exponential distribution is estimated from the
sample. The modifications of the EDF test procedures are made by Spinelli and Stephens(1987).
They examine several EDF tests for the exponential distribution with unknown parameters, pro-
duce the critical values of these test statistics, and make comparisons of power of tests by Monte
Carlo method.

In Section 2 we propose a new test procedure for exponentiality when both the location and
scale parameters are unknown, and tables of critical values are constructed by Monte Carlo
method. Also some illustrations of the proposed test procedure are provided via example data.
Section 3 presents the null distribution of the proposed test statistic for small sample sizes.
Section 4 contains Monte Carlo power comparisons of the test statistics under a class of alternative

distributions.

2. Proposed Test Procedure

We consider the problem of testing the null hypothesis Hy © a random sample X,, X, -,

X, follows the exponential distribution with unknown origin a and mean B, denoted by exp(a.,
8,
Flxs o, p)=1—expl— G—a)./Bl, x>0, B>0.

In this problem, without loss of generality, o may be assumed to be 0. Many test procedures
such as Stephens(1978) and Lee ef al. (1980) have been developed for this particular case. Howe-
ver, in practical situations, data sets collected from reliability testings are usually not of this
type. Stephens(1986) suggests several ways of dealing with unknown parameter cases. We employ
an approach in which both a and B are estimated from the sample, and then the probability

integral transformation of the ordered sample

Zo=FXp3a, B) i=1, 2, n
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where Xiy<X@p< -+ <X, is carried out, using the estimates in F( ). This transformation
converts a given random sample to a sample of uniform values. This procedure is common to
the goodness—of—fit tests based on EDF statistics which deal with unknown parameters.

In this article we propose a new test of the above null hypothesis. The test procedure is
based on the L.—norm which measures, in a different way than other commonly used tests,
the conformity of the sample data to the exponential distribution. The proposed test is as follows.

(1) Compute the uniformly minimum variance unbiased(UMVU) estimates of o and B, respecti-

VCIY9
a=nXe—X1/"(n—1
p=n[X—Xwl/ (n—1)

wher X is the smallest sample. Note that &+6=’X.
(2) Apply the probability integral transformation to the ordered sample values

Zo=1—expl—(Xo—al/Bl, i=1, -, n.
Then the test of exponentiality is converted to the test that a random sample is uniformly distribu-
ted between 0 and 1.
(3) The test statistic is the L,— norm of discrepancy between the cumulative distribution function

of uniform and the empirical distribution function of the sample values. Test statistic L1 is defined
by

Li=F(u) —F.(ud 1, i=1, >, n,

where i - I: denotes the Li—norm, and %;=F '(i/'n). More specifically, the definition is
Li=i/n—FLF'G/n) i, i=1, = n—1.

The computation of the test statistic L1 is easily performed by the following formula,

L= §' |i/n—[{number of Zos}< i/nl/nl.

i=1
If L1 exceeds the critical value in Table 1, we reject, at a specified significance level, the hypothe-
sis that the observations are from the exponential distribution.

We have obtained the critical values for moderate and large sample sizes by Monte Carlo simula-
tion. It is to be noted that this test statistic is a discrete random variable and hence the test
results are conservative in the sense that the probability of a type 1 error is smaller than the
significance level specified. Table 1 gives the critical values for the test statistic L1, for sample
sizes n=15 (1) 30 (2) 50 (5) 100 (10) 400, and for significance levels 0.30, 0.25, 0.20, 0.15,
0.10, 0.05, 0.025, 0.01, respectively. These critical values are obtained from 10,000 Monte
Carlo runs for each sample size #. The exponential random deviates are generated on a CDC
180”860 computer using the IMSL(International Mathematical and Statistical Library) subroutine
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GGEXN. To make approximations of the critical values for sample sizes larger than 400, linear
regression models are fitted for each significance levels. The approximation results may highly
be reliable since the coefficients of determination of the fitted models are greater than 0.9997

for all cases.

Table 1. Critical Values for Test Statistic L1

Sample Significance level
size 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01
15 0.867 0.933 1.000 1.067 1.133 1.330 1. 467 1.667
16 0.875 0.938 1. 000 1.093 1.188 1.375 1.500 1.688
17 0.941 1.000 1.059 1.118 1.235 1.412 1.588 1.824
18 0.944 1.053 1.111 1.167 1.278 1.444 1.611 1.833
19 1.000 1.056 1.150 1.211 1.316 1.526 1.684 1.895
20 1.050 1.100 1.158 1.250 1. 350 1.550 1.750 1.950
21 1.095 1.143 1.218 1.286 1.429 1.619 1.762 2.000
22 1.091 1.182 1.227 1.318 1.455 1.682 1.864 2.091
23 1.130 1.208 1.261 1.391 1.478 1. 696 1.870 2.130
24 1.167 1.217 1.292 1.417 1.542 1.708 1.917 2.167
25 1.200 1.240 1.320 1.440 1. 600 1.800 2.000 2.200
26 1.231 1.269 1.346 1.462 1.615 1.808 2.000 2.269
27 1.259 1.333 1.407 1.516 1.667 1.852 2.074 2.333
28 1.286 1.357 1.429 1.536 1.690 1.929 2.138 2.357
29 1.310 1.379 1.448 1.551 1.714 1.931 2.143 2.448
30 1.333 1.400 1.467 1.600 1.733 1.967 2.200 2.467
32 1.375 1.469 1.531 1. 656 1.813 2.031 2.250 2.531
34 1.412 1.500 1.588 1.706 1.853 2.118 2.353 2.618
36 1.472 1.556 1.667 1.778 1.944 2.222 2.472 2.750
38 1.526 1.605 1.711 1.842 2.000 2.237 2.474 2.763
40 1.575 1.650 1.750 1.875 2.050 2.325 2.575 2.925
42 1.595 1.690 1.786 1.929 2.095 2.381 2.643 2.976
4 1.659 1.750 1.841 1.977 2.159 2.455 2.750 3.091
46 1.674 1.761 1.891 2.022 2.196 2.500 2.783 3.167
48 1.729 1.813 1.938 2.083 2.271 2.563 2.833 3.174
50 1.760 1. 860 1.980 2.120 2.320 2.640 2.900 3.240
55 1.873 1.964 2.091 2.236 2.455 2.764 3.091 3.455

60 1.950 2.067 2.183 2.350 2.583 2.933 3.250 3.583
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Table 1. (Continued)

Sample Significance level
size 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01
65 2.031 2.154 2.292 2.446 2.692 3.046 3.385 3.800
70 2.129 2.257 2.386 2.557 2.786 3.143 3.529 3.957
75 2,200 2.320 2.467 2.627 2.867 3.267 3.640 4.093
80 2.275 2.400 2.550 2.725 2.975 3.388 3.763 4.163
85 2.329 2.471 2.624 2.812 3.071 3.471 3.835 4.329
90 2.422 2.544 2.700 2.500 3.178 3.600 4.000 4.544
95 2.505 2.642 2.800 2.989 3.253 3.705 4.137 4.642
100 2.570 2.690 2.860 3.040 3.340 3.780 4.190 4.720
110 2.673 2.818 2.991 3.227 3.518 3.999 4.399 4.945
120 2.808 2.967 3.150 3.358 3.667 4.158 4.642 5.199
130 2.931 3.092 3.285 3.515 3.854 4.338 4.869 5.469
140 3.043 3.207 3.393 3.643 3.993 4.536 5.029 5.671
150 3.173 3.340 3.553 3.800 4.133 4.687 5.180 5. 807
160 3.256 3.438 3.650 3.913 4.269 4. 856 5.394 6.050
170 3.371 3.553 3.776 4.053 4.429 4.994 5.576 6.247
180 3.467 3.650 3.861 4.133 4,517 5.139 5.711 6.472
190 3.568 3.768 3.989 4.258 4.616 5.232 5.816 6.495
200 3.650 3.850 4.085 4,380 4.765 5.415 6.085 6. 740
210 3.771 3.986 4.219 4.519 4.929 5.533 6.138 6.914
220 3.827 4.036 4.277 4.577 4.995 5.664 6.327 7.032
230 3.917 4.117 4.369 4.678 5.100 5.783 6.361 7.209
240 4.004 4.208 4.475 4,804 5.213 5.908 6.638 7.400
250 4.108 4.324 4.592 4.924 5.372 6. 040 6.752 7.580
260 4.188 4.419 4.681 5.027 5.519 6.250 6. 881 7.692
270 4.315 4.552 4.822 5.156 5.611 6.322 7.048 7.963
280 4.336 4.582 4.876 5.200 5.650 6.396 7.168 8.018
290 4.410 4.648 4.928 5.293 5.783 6. 500 7.245 8.134
300 4.493 4.747 5.027 5.360 5.883 6.637 7.400 8.303
310 4.568 4.806 5.116 5.432 5.909 6.777 7.529 8.384
320 4.628 4.894 5.175 5.534 6.050 6.809 7.575 8.622
330 4.706 4.967 5.269 5.630 6.142 6.973 7.682 8.630
340 4.788 5.041 5.350 5.712 6.209 7.041 7.800 8.894

350 4.854 5.129 5.437 5.849 6.349 7.174 7.980 9.037
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Table 1. (Continued)

Sample Significance level
size 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01
360 4.958 5.222 5.522 5.939 6.483 7.358 8.175 9.086
370 4.978 5.238 5.570 5.946 6.541 7.462 8.343 9.251
380 5.071 5.329 5.645 6.045 6.603 7.508 8.397 9.476
390 5.131 5.418 5.736 6.138 6.710 7.564 8.533 9.459
400 5.180 5.455 5.798 6. 200 6. 765 7.740 8.605 9. 695

© -2678\/n .2819/n .2990\/n .3195\/n .3486\/m .3946\/n .4402\/n .4936\/n

—.1375 —.1393 —.1479 —.1502 -—.1608 —.1771 —.2099 —.2295

To illustrate the proposed test procedure, we consider the following two examples. From each
data set we obtain the UMVU estimates of a and B, and values of test statistics are computed

by the following formulas.

KS: max[max {G/n)—Ze}, max {Zo—G—1).n}],

1<i<n 1<i<n

K! max {G/m)~Zop}+ max {Zo—G—1D ./ n},
1<i<n 1<i<n

CM: E {Zo—(Q2i—1)./2n)2+1/ 120,
i=1

Wi £ {Zo—Qi—D/ 2P+ 1 12n—n(G~1/2)",

i=1

AD: —(L/n) £ Qi—DnlZe} +inl1=Zarro}1—n.
i=1

Example 1.  Epstein(1960) provides 51 observations from a life testing which employs the type
II censoring. He tests the hypothesis that observations are from an exponential distribution with
constant parameter, and concludes that the mean life in the first half of the testing is different
from the mean life in the second half of the testing. Now, we test exponentiality of the observations

- regardless of the mean life.
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Table 2. Life Times Between Failures of a System

150.0 164.0 179.0 24.0 341.0 7.0 24.0 144.0 187.0
53.0 56.0 72.0 48.0 100.0 167.0 12.0 233.0 204.0
15.0 95.0 7.0 152.0 5.0 2.0 35.0 313.0 49.0
18.0 153.0 185.0 37.0 10.0 32.0 27.0 51.0 9.0
45.0 59.0 40.0 8.0 66.0 2.0 0.0 2.0 42.0
35.0 38.0 66.0 30.0 9.0 11.0

The computation results are KS=0.1065, K=0.2059, CM=0.1469, W=0.1164, and AD=0.
8461. The critical values given by Table 5 in Section 4 show that all of these test statistics
are not significant at the 5% level. Now, we test exponentiality of the same data set applying
the proposed test statistic, and obtain L1=2.2549 which does not exceed the 5% significant
point, 2.640(from Table 1). Hence, we also can not reject the null hypothesis that life times

between failures of the system are exponentially distributed.

Example 2 © 32 measurement of modulus of rupture of wood beams are given by Spinelli and
Stephens(1987) as follows.

Table 3. Modulus of Rupture of Wood Beams(Ordered)

43.19 49.44 51.55 55.37 56.63 67.27 78.47 86.59
90.63 92.45 94.24 94.35 94.38 98.21 98.39 99.74
100. 22 103.48 105.43 105. 54 107.13 108. 14 108.64 108.94
109. 62 110. 81 112.75 113.64 116. 39 119.46 120.33 131.57

The computed values of test statistics are KS=0.3523, K=0.5487, CM=1.0591, W=0.7776,
and AD=5.0580. The critical values given by Table 5 show that all of these test statistics are
highly significant at the 5% level. Also we test exponentiality of the data set applying the proposed
test statistic, and obtaion L1=4. 9688 which is far beyond the 5% significant point, 2.031. Hence,

we also reject the null hypothesis that the observations follow the exponential distribution.

3. Distribution of Test Statistic L1

We present the null distribution of the proposed test statistic for small sample sizes, n=2, 3, 4,
5. From the characterstic of the proposed statistic, we know that the computation of L1 is not
ffected by any shifts of the sample point Zo within the k—th interval, ((k—1)./n, k/nl,

k=1, -, n. That is, L1 value is not changed unless a sample point within the £—th interval
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is moved to any other intervals. And the probability of a sample point being located within a
specific interval is 1/n. Consequently, we can obtain the null distribution of the statistic L1
for each smaple size n.

For example, let n=4, then we can consider a problem of locating, independently, 4 sample
points into 4 intervals of size 1/4. The total number of events is 35 which can be obtained

by the formula 2-.C,. All of the events and probabilities corresponding to the events are as

follows.
Event L1(X4) Prob. (X449 Event L1(X4) Prob. (X 44)
0004 6 1 1030 2 4
0013 5 4 1102 1 12
0022 4 6 1111 [V} 24
0031 3 4 1120 1 12
0040 4 1 1201 1 12
‘0103 4 4 1210 2 12
0112 3 12 1300 3 4
0121 2 12 2002 2
0130 3 4 2011 1 12
0202 2 6 2020 2 6
0211 1 12 2101 2 12
0220 2 6 2110 3 12
0301 2 4 2200 4 6
0310 3 4 3001 3 4
0400 4 1 3010 4 4
1003 3 4 3100 5 4
1012 2 12 4000 6 1
1021 1 12

Summarizing the above computational results, we can find the distribution of the test statistic

L1 for sample size n=4.

x 0 174 172 3/4 1 5/4 3/2
fulo : 0. 09375 0. 28125 0.3125 0.1875 0. 08594 0.03125 0. 00781

Finally, we can construct the null distributions of L1 by utilizing the computer program PARTNN.
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Talbe 4. Null Distributions of Test Statistic L1

Sample size x fulx) x ful)
n=2 0 0. 50000 1/2 0. 50000
n=3 0 0.22222 2/3 0. 25926

1/3 0. 44444 1 0. 07407
0 0.09375 1 0. 08594
n=4 1/4 0.28125 5/4 0.03125
12 0.31250 32 0.00781
34 0. 18750
0 0.03840 6/5 0.04832
1/5 0. 15360 7/5 0. 02304
n=5 2/5 0. 24960 8/5 0. 00960
3/5 0. 23040 9/5 0. 00320
4/5 0. 15360 2 0.00064
1 0. 08960

4. Power Comparisons

Monte Carlo power studies are conducted to compare various test procedures for exponentiality,
KS, K, CM, W, AD, and L1. For the pu.rpose of precise power comparisons, new critical values
for KS, K, CM, W, and AD test statistics are obtained from 10,000 Monte Carlo runs which
are performed by the same way as for the L1 test. Critical values at the 5% significance level
are given in Table 5 for sample sizes =30, 50, 75, 100, 150, and 200.

Table 5. 5% Critical Values for Test Statistics, KS, K, CM, W, and AD

Sample Test statistics

size KS K CM W AD
30 0.1914 0.2879 0.2058 0.1524 1.1296
50 0.1504 0.2269 0.2149 0.1559 1.2034
75 0.1226 0. 1866 0.2155 0.1546 1.2244

100 0.1071 0.1613 0.2146 0.1537 1.2314

150 0.0882 0.1335 0.2196 0. 1580 1.2677

200 0.0764 0.1151 0.2196 0. 1586 1.2734

For sample sizes #=30, 50, 75, 100, 150, and 200, 10000 random samples are generated
by simulation from the following distributions : Weibull(2, 3), Weibull(1, 1.5), gamma(0.5,
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D, gamma(2, 1), normal(2, 5), log—normal(1, 0.5), half—normal(0, 5), beta(2, 3). beta(2,
2). The IMSL subroutines used to generate the random data are GGWIB for Weibull, GGAMR
for gamma, GGNML for normal, GGNLG for log—normal, and GGBTR for beta distribution.
These distributions are usually considered as practical alternatives to the exponential distribution
in the literature of reliability data analysis such as Lawless(1982).

The proposed test procedure and five other well—known competitors are performed, at the
5% significance level, on each of the random data generated. The power results are the percentage
of 10, 000 Monte Carlo data sets declared significant by the test statistics at the 5% significance
level. For sample sizes less than 30, power comparisons are not presented since the critical

values for L1 yield smaller significance probabilities than the specified significance levels.

Table 6. Monte Carlo Power Estimates of Six Test Statistics at the 5% Significance Level under

Some Alternatives

Alternative Test statistics
distributions KS K CM w AD L1
Sample size n=30

Exponentiall null] .0499 .0499 . 0500 .0499 .0499 .0480
Weibull(2, 3) 7390 .7388 . 8406 . 7634 .8317 .8524
Weibull(1, 1.5) .3787 .3504 .4693 .3813 .4530 .4764
Gamma(0.5, 1) .5411 .4561 .6139 .5058 .6996 .6033
Gamma(2, 1) .3051 .2792 .3794 .3086 .3685 .3806
Normal(2, 5) .9651 . 9699 . 9862 .9722 .9851 . 9880
Log—normal(1, .5) .4860 .4670 .5666 .5084 .5599 .5656
Half—normal(0, 5) 2092 .1949 L2734 .2099 . 2535 .2817
Beta(2, 3) L7779 .8132 . 8909 .8180 .8903 . 9068
Beta(2, 2) . 8960 .9436 .9653 .9302 . 9668 .9742

Sample size #=50

Exponentiall null] .0499 .0499 .0498 .0500 .0499 .0490
Weibull(2, 3) .9520 .9506 .9826 . 9602 .9814 .9847
Weibuli(1, 1.5) .6470 .6011 .7491 . 6396 . 7469 . 7586
Gamma(0.5, 1) . 8000 .7160 .8502 . 7592 .9133 .8457
Gamma(2, 1) .5473 .5001 .6310 .5449 .6323 .6404
Normal(2, 5) .9992 .9994 .9999 .9996 .9999 1.0000
Log—normal(1, .5) .7713 .7435 .8248 . 7867 .8274 .8227
Half —normal(0, 5) .3586 .3264 .4419 .3395 .4194 .4555
Beta(2, 3) .9648 .9778 .9934 .9763 . 9940 .9955
Beta(2, 2) .9955 .9986 . 9996 .9980 .9996 .9998

Sample size n=75
Exponentiall null] .0500 . 0498 . 0503 . 0500 . 0499 . 0490
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Table 6. (Continued)

Alternative Test statistics

distributions KS K CM w AD L1
Weibull(2, 3) .9973 .9971 .9998 .9981 . 9998 . 9998
Weibull(1, 1.5) . 8628 .8233 . 9255 .8581 .9280 .9314
Gamma(0.5, 1) .9421 . 8963 .9621 .9211 . 9850 .9598
Gamma(2, 1) . 7825 . 7356 . 8563 . 7869 .8631 . 8564
Normal(2, 5) 1. 0000 1..0000 1..0000 1.0000 1.0000 1.0000
Log—normal(1, .5) .9407 .9241 .9626 .9487 .9657 .9589
Half —normal(0, 5) .5308 .4785 .6478 .5101 . 6249 .6623
Beta(2, 3) .9984 .9995 .9999 .9996 1.0000 1.0000
Beta(2, 2) 1. 0000 1. 0000 1.0000 1.0000 1.0000 1. 0000

Sample size #=100

Exponentiall null] .0499 . 0499 0500 .0498 . 0500 .0495
Weibull(2, 3) .9999 .9999 1.0000 .9999 1. 0000 1.0000
Weibull(1, 1.5) .9515 .9387 .9831 9524 .9839 .9847
Gamma(0.5, 1) .9858 . 9692 .9928 .9794 .9982 .9916
Gamma(2, 1) .9074 .8830 . 9494 .9103 .9550 . 9487
Normal(2, 5) 1.0000 1.0000 1. 0000 1.0000 1. 0000 1.0000
Log—normal(1, .5) .9853 .9825 .9932 .9894 .9940 .9928
Half~ normal(0, 5) . 6702 .6385 . 7979 . 6596 L7773 .8084
Beta(2, 3) 1.0000 1.0000 1. 0000 1.0000 1..0000 1.0000
Beta(2, 2) 1.0000 1. 0000 1.0000 1.0000 1. 0000 1.0000

Sample size n=150

Exponential[ null] . 0500 .0500 .0499 0500 0.500 . 0496
Weibull(2, 3) 1. 0000 1. 0000 1.0000 1.0000 1.0000 1.0000
Weibull(1, 1.5) . 9956 .9936 .9989 . 9952 .9992 .9991
Gamma(0.5, 1) .9993 .9975 .9997 .9984 .9999 . 9996
Gamma(2, 1) .9873 .9785 . 9957 .9868 .9964 .9961
Normal(2, 5) 1. 0000 1.0000 1.0000 1.0000 1.0000 1.0000
Log—normal(1, .5) . 9995 . 9994 .9997 . 9996 .9997 . 9996
Half— normal(0, 5) .8513 .8301 .9353 . 8392 9201 . 9440
Beta(2, 3) 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000

Beta(2, 2) 1. 0000 1. 0000 1. 0000 1. 0000 1.0000 1. 0000
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Table 6. (Continued)

Alternative Test statistics
distributions KS K CM w AD L1
Sample size n=200

Exponentiallnull] L0498  © .0500 .0499 .0500 . 0500 .0500
Weibull(2, 3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Weibull(1, 1.5) .9995 .9994 .9999 .9995 1. 0000 .9999
Gamma(0.5, 1) 1.0000 .9999 1. 0000 1. 0000 1. 0000 1.0000
Gamma(2, 1) .9980 . 9968 . 9994 .9986 . 9997 . 9995
Normal(2, 5) 1.0000 1.0000 1. 0000 1. 0000 1.0000 1.0000
Log—normal(1, .5) .9998 .9998 .9999 .9999 .9999 1.0000
Half — normal(0, 5) .9462 9410 .9848 .9393 .9835 .9880
Beta(2, 3) 1. 0000 1. 0000 1.0000 1.0000 1.0000 1.0000
Beta(2, 2) 1. 0000 1. 0000 1. 0000 1.0000 1.0000 1. 0000

The results of power comparisons for finite sample sizes reveal that the proposed test is superior
or comparable in power properties to other tests except for the cases of gamma(0.5, 1) and
log—normal(1, 0.5) distributions. Anderson—Darling test appears to be the most powerful for
these two distributions.

5. Concluding Remarks

The proposed goodness—of—fit test based on the L,—norm always yields conservative test
results, particularly for small sample sizes since the test statistic is a discrete random variable.
In spite of this property, it has relatively high power for moderate and large sample sizes, compa-
red with several commonly used EDF tests under certain alternative distributions. And it requires
no more computation than some other tests. In these respects this test procedure could be efficien-
tly applied, in particular, to the practical situations where the exponentiality of data plays a

crucial role in the analyses or assessments.
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