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Asymptotic Density of Quadratic Forms

Ki-Heon Choi*

ABSTRACT

The theory of the asymptotic behavior of Toeplitz forms is applicable to some problems concer-

ning the local limit theorem.

1. Introduction

This paper is concerned with the problem of obtaining satisfactory approximation for the determi-
nation of the density function of quadratic forms in correlated normal variates. Such quadratic
forms are of importance in many applications of the theory of stochastic processes. The quadratic
forms can be transformed to weighted sums of squares of independent identically distributed
normal variates. 'In many applications, these weights are or approximate the eigenvalues of a
Toeplitz matrix. This paper is intended to show that the theory of the asymptotic behavior of
Toeplitz forms is applicable to some problems concerning the local limit theorem. That summary
is given in the followings. In Section 2, we study the asymptotic distribution of the eigenvalues
of Toeplitz forms. The remainder of the paper uses the results of this section. Section 3 is

devoted to the problem of finding the asymptotic density of quadratic forms.

2. Asymptotic Distribution of the Eigenvalues of Toeplitz Forms

In certain applications of the theory of stochastic processes, it happens that the weights A

of the diagonalized quadratic form

Q= Z": A

v=1
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are the eigenvalues(or approximate eigenvalues) of a Toeplitz matrix. The following approximation
for the distribution of @, is based upon the theory of these matrices. This method is an application
of a general theorem of Szego on the asymptotic distribution of the eigenvalues of Toeplitz forms,
which we are going to state(See Grenander and Szego(1958)).

Consider a Toeplitz matrix
To={ev-p s vs u=1, 2, ==, n}
where
o= (L/2m) [L &= glddr,  v=0, £1, +2, ~-.
and g(x) is a measurable bounded function, say
lg) | <M<w, vz
Denote the eigenvlues by A, A **, Aw. The quadratic form

"
Q=x'T.x= Z ¢, x.%,
Vap=1

= 2w [ 1Ex 1 glde
v=1

is Hermitian so that the A’s are real. Moreover,

l2*T, 2| <M/2m) [ 1 £ 2,6 lx
v=1
<Elxl
v=1

for all x=(x;, -*, %), SO
| d | < M, Vvau,v.

For any n we can consider the distribution of the eigenvalues in the interval (—M, M).
Let

sw= (1L/n) £ X,
v=1
denote the moments of these distributions. Then

lim Sup = (1/211) J.ﬂ_" gp(x)dx, p:l' 2, vy 3

n—>w

Since the moments converge, the same is true of the distributions. The limiting moments belong
to the stochastic variable g(U) where U is uniformly distributed in (—m, n). Hence the eige-
nvalues of a Toeplitz form behave asymptotically like the ordinates of the function g with

equidistributed U. More precisely,

. number of eigenvalues<t
lim " = (1/2n) Lebesgue measure of [x | g(x)<t1.

n=>wo
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3. Asymptotic Density of Quadratic Forms

As an example, consider the Hermitian matrix B, of the form

le=jl-1 3¢5 .

p ., if j#k 3

B.G.R= ( -
0, if j=k.

where pe(—1,1). In this case, B, is a Toeplitz matrix with

g(x)= b2 plhl—leih

k0

2(cos x—p)./ (1—2p cos x+p?)
and
g 1< 2/7Q-p)=M, Vax.

By Szego’s theorem the distribution of the eigenvalues converges to the distribution of g
where U is uniformly distributed over (—m,n). Let p. and o,’ denote the mean and variance
of the n* distribution. Then

= (L) £ A= (1% te(B,)=0

v=1
and

lim o= (L/2n) [1, £@ds

Il

(L2 f'_" ( 2(cos(x) —p) )2

1—2p cos(x) +p?
2/ (1—pD? [3p°—3p*+11.

Using the distribution of the eigenvalues, it is possible to study the density of certain quadratic

forms. First, we are concerned with the distribution of the random variable

€1 &1
Q.=b' ( "\ + (e s e0B. ( )
En Ex

where &, € * are i.i.d. standard normal random variables, p and B, are defined in Section

2 and b=b, are vectors for which

ibali?=0(n).

lemma 3.1 If Z has the standard normal distribution, then

QGs, )= Elexplsz+(1./2) itZ9)]
= (1-i)"% exp{—s*/ (21 —i)}
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Proof.

QG )= ElexplisZz+(1./2) #t72)]
a/ven [0 explisz+ (1.72) itzz— (1/2) 77]

expl =52/ (2(1-iD)) ] [/ vem expl—(1L72) =i
(= Gs,/ (1=iD)*]dz.
This integral is easily evaluated and obtains

Q(s, ) =(1—i)™* exp{—s*/ (2(1—it))}.

Llemma 3.2 The characteristic function of Q, is given by

(1) =E("%)

= I 1~itB, | * exp{~(1/2)Fb(1—itB,) b}

Proof. We introduce an orthogonal matrix C for which CB,C’'=D is a diagonal matrix. Then
B,=C'DC and

ti—iB. | = | 1—iD |

=(1~ithar) - (1= itAsn)

where the A, >, A.n are the eigenvalues of the matrix B,. Let Z=Ce and B=Cb. Then it
is easily seen that Z,, -** Z, are independent unit normal random variables. Moreover,

b (1—itB,) 'b=b'[c’0—itD) 'Clb

=p(1—itD) 'p.

so that
ba—iB) b= £ (B2 (1—ithy) .
k=1
‘Thus
Q.= X [(BZt+ (172 AuZd]
k=1
and
E{¢}= Efexp £ LitpZi+ (1/2) inuzil}
k=1
= = EfexpliBZi+(1/2) ithaZil}.
Hence

o (f) = [nﬂk=,<1—m>]“”exp{—(1/2) £ (62 (=it}

= 11-itB. | 7% exp{=(1/2) Fb(1—itB.) ).
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This is not too convenient an expression, partly because the Au are, in general, difficult to

compute and partly because it is difficult to carry out the Fourier inversion ledading to the freque-

ncy function for Q.. We find readily the mean value y, and variance o, are

w= (172 §M= (1/2) tr(B.)=0
ol= = B + (172 T Mk
k=1 k=1

Now let £,( - 5 p,b) denote the density of @

Theorem 3.1 Let

Q= Qo » n2l
Then Q.* has a density f,* for all n>>1 and

lim  sup | £* @D =9 | =0

n—> o

where

0@ = /20 eV, —o<le<w.

Proof. There is no loss of generality in supposing that M>>1, that IIbii2” 6,’<M, and that s,
<M, for all n. Let y,(#) denote the characteristics function of @, and let =1"8M*<1/8M.
If |¢]<86., then

log vl = — (1/2) £ log(1~ithu/c:)

k=1

- W2 (¢/e) E {pe/ -G A )}
=]

i

k=1

W2 2 W {E /e
p=2

- (W) (€/a) I B0/ o))
1

=0 k=

- (172 £+R,D), —oo <t<w,
where

IROI< WD E /o) 1t
=3

+ (L2 /) bEE | M) |,
»=1

for all | ¢ | <8o, and all #2>1, by Taylor’s Theorem applied to the logarithm. Here R, tends

to zero as n tends to infinity, for all ¢, since
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IRI< (/2 IMI/6®) T (Mt/s,)|?
=3

+ (172 MIt13/69 it =1 M/ c) |
p=1

< @73 GIMtl* /6 + (2/3) MIt1/e) i

~

Hence

lim wy,)=e%#, vi;

n—w

and, therefore the distribution function of @.* converges to the standard normal.
It is clear that @,* has a density f,* for all n2>1 and that v, is integrable with respect to
Lebesgue measure for all n>>3. So,

L@D= W oem [T e y.(Dat
and
£ @—0@ | = | /2w [7 e ly.(8)—e % Jdt |
<o [Tl wO—e % | dt

for all —o0 <z<<ec and all n>>3.
If n is sufficiently large and |¢ | <86,, then
IR | < (L73) MF/ 6% do,+ (1./3) (ME/ 5,2 bii0,
<@/ ¢

and, since we have | vy,(t)—¢ % | <2 and

ya(®) | o7,

[y =e 2 | gt — 0

by the dominated convergence theorem. It remains to show that

lim fm>5q,, L yw.(8) | dt — 0.

B

as > w. Now

Lyl | = ey [ 1=t Qo) | 772 | exp(~(1/2) (B/02)
2(p2/ (1=M A0 |
k=1
<My 14+ W 02) |7

’

< (_1/ a+&/ (40"2)))1/%
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where

No=#{k 102> (L0}
and

lim (1L/n) N,= (1/2r) meas [x | gle)> (1/2)]>0.
So

jl:lZBﬁ,. I Wu(t) | dt S f\,g?_‘sﬂ" (1/(t2/4c"2))1/w" dt
j‘”Z&:" <(1/(1+52/4))‘/4Nn dt
J‘(l/(l+52/4)>1/m,_ e, &t

>0 as n—>w.

The theorem follows easily.
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