두 독립 모집단의 공분산 행렬에 대한 붓스트랩 추론

Bootstrap inference for covariance matrices of two independent populations

  • 발행 : 1991.03.01

초록

다변량분산분석이나 판별분석 등에 있어서 검정의 대상이 되는 공분산행렬의 동일성에 대한 붓스트랩방법의 활용을 살펴보았다. 두 모집단의 공분산행렬을 $\Sigma_1, \Sigma_2^$라 하면, 가설 H : $\Sigma_1 = \Sigma_2$은 불변성의 관점에서 $\Sigma = \Sigma_1 \Sigma_2^{-1}$의 고유값들이 모두 1 이라는 것과 동등하다. 본 연구에서는 (1) $\Sigma = \Sigma_1 \Sigma_2^{-1}$의 표본고유값들에 대한 편의를 붓스트랩에 의해 정정하였으며, (2) 이들의 표본분포를 붓스트랩분포로 추정하여 검정에 활용하였으며, (3) 합동붓스트랩에 의해 바플렛의 수정우도비 검정통계량의 분포를 근사하였다.

It is of great interest to consider the homogeniety of covariance matrices in MANOVA of discriminant analysis. If we lock at the problem of testing hypothesis, H : $\Sigma_1 = \Sigma_2$ from an invariance point of view where $\Sigma_i$ are the covariance matrix of two independent p-variate distribution, the testing problem is invariant under the group of nonsingular transformations and the hypothesis becomes H : $\delta_1 = \delta_2 = \cdots = \delta_p = 1$ where $\delta = (\delta_1, \delta_2, \cdots, \delta_p)$ is a vector of latent roots of $\Sigma$. Bias-corrected estimators of eigenvalues and sampling distribution of the test statistics proposed are obtained. Pooled-bootstrap method also considered for Bartlett's modified likelihood ratio statistics.

키워드