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(Fluorination of YBa,Cu;0:-, by a Sol—Gel process)
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ABSTRACT

Fluorine-doped YBa,Cuy0; - F° ¥y superconducting materials with y varing two orders of
magnitude from 0.02 to 2.0 have been prepared by a sol-gel process using metal nitrate

salts, sodium hydroxide and sodium fluoride. Fluorine contents have been measured using
an ion-selective electrode. All fluorine introduced as reactant was found to be present in
the resulted samples. From the observation of XRD it has been concluded that the sam-
ples with y<0.2were single phase of perovskite structure, whereas those with y> 05
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yielded compounds such as BaF,, YF; and CuQ. The observation of solid state F NMR

has been carried out in order to check whether fluorine was actually incorporated into the

lattice sites. and the experimental results revealed that the mole ratio of fluouine incorpo-

rated into the lattice sites of YBa,Cu,0;-x was approximately 0.2 per mole of the com-

pound when saturated. Also electrical resistivity measurement indicated that onset transi-

tion temperature has the tendency to increase slightly with increasing y in the pointed di-

lute region y<0.2.

*egugn Ho)Tes

1. Introduction

The mechanism for superconductivity
in high-Te oxide materials is a very im-
portant and highly interesting problem
which is not yet understood. However,
the means of doping systematics, in gen-
eral, have provided useful insight to un-
derstand the convensional supercondu-
ctivity and a number of result have
already been obtained through this way
for the YBa;CuiO;-, superconductor.
There have been several reports on the
effect of cation srbstitution in different
srblattices of YBa,CuiO;-,. A complete
substitution of yittrum ions by most other
rare earth elementts usually does not
have a significant effect on the transition
temperature [1—7]. A limited amount(
<40 mole %) of Ba can be substituted
by Sr without affecting the crystal struc-
ture, but a gradual decrease in the transi-

tion temperature have been reported [1,

8]. Similary, there has been reported that
nickel [9] and silver [10] substitutuon in
the copper sites may decrease the transi-
tion temperature. In the CuQ regions
themselves, replacement of 0% 0% ap.

pears to indicate that isotope effect is ei-
ther absent [11] or very small [12]. By

contrast with these null effects or Small
changes, it has recently been reported
that the introduction of fluorine into the
oxygen sublattice yielded the new.pro-
spective materials with onset transition
temperature of 155 K [13], and in an-
other case to 148.5K [14]. A theoretical
treatment within the frame-work of BCS
theory [15] suggests that fluorine atoms
in the YBa;CusO; -, lattice may be relat-
ed to changes of electronic density of
states at the Fermilevel [16]. Therefore,
a systematic substitution of oxygen by
fluorine have been carried out in this ex-
periment to YBa,CuiO; -,.

Fluorine-doped samples have been pre-
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pared by a solgel process, since a sol-gel
process has such important advantages
in the field of doping study as to permit
the mixing of reactants at a molecular
level. The resulted materials have been
characterized by means of fluoride ion
analysis, XRD, *F NMR and electrecal

resistivity measurements.

2. Sample preparation and experiment

The Fluorinedoped YBa,CuiO,-.F,
samples with the nominal contents of flu-

orine, y=0.02, 0.05, 0.2, 0.5 and 2.0 have
prepared by a sol-gel process [17] using
high purity Y(NOs); - 5HO, Ba(Noy); Cu
(NO:»)3B0, NaOH (precipitation agent)
and NaF(fluorination agent)as the start-
ing materials.

Y (NO3); » 5H;0, Ba(Noj),, Cu(NO;) 2

+ 3H,0,and NaF were weighted to get
Y :Ba:Cu:F ratios to be the aimed
nominal composition.

Y(NO;); » 53H,O and NaF were dis-
solved in warm distilled water to obtain
an aqueous solution containing yittrium
cations and yittrium fluoride precipitates.
Ba(No;); and Cu(NO3j); « 3H,0 were dis-
solved in warm distilled water to obtain
an aqueous solution containing barium
and copper cations. These two sorts of
solution were slowly poured into an aque-
ous solution of NaOH simultaneously
with vigorous motor stirring at the condi-
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tion of solution basicities of pH 13 at
room temperature. Blue white precipe-
tates of the mixture of Y(OH);, Ba(OH),
and YF, were formed from the clear
transparent solution . The precipitates
were isolated by filltration, washed with
destilled water several times and dried
overnight in drying oven at 120°C. Blue
white gel formed precipitates turned out
to be black-tan. The black-tan precursors
were thoroughly ground and calcined at
850°C for 12 hours in air, followed by
slow cooling. The calcined powders were
pressed into pellet form and these pellets
were sintered at 900°C for 18 hours and
then cooled down slowly to room
tenperature in the flow of oxygen.

The fluorine analysis of the resulting
materials has been carried out by the fol-
lowing manner. The fluorinated samples
were decomposed by an alkaline flux fu-
sion technique and fluoride contents were
determined by a fluoride ion-selective
electrode. The samples were fused with
NaOH at 700°C in a nickel crucible. The
fused melts were digested in water,
adjusting pH value up to 8. Tisab I so-
lution (buffer solution of pH 5~5.5) was
added in the melts, adjusting the total
ionic strength with buffer.

X-ray powder diffraction analysis has
been carried out using a computer con-
trolled diffractometer with CuKa X-ray

source. The diffraction patterns have
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been measured in the scanning range
from 26 =20 to 70C.
Solid-state “F NMR measurements

have been made under a static magietic
field of 4.7 T and a modulation field of ~
| 10 gauss with pulse FT(Fourier-Trans-
form)spectrometer. The NMR line shapes
have been determined by Fourier trans-
forming the free inductuon decay(FID)
which occurs after the 90°C pulses of 1.7
us width and a spectral width of + 200
kHz are applied.
Electrical resistivity measurements of
the sintered pellets have been performed
using the standard four-probe method.

3. Resuits and discussion

The fluoride contents of the resulting
materials have been measured using a
fluorine sensitive electrode (Orion model
407 A). The result of the fluorine analy-
sis revealed that all fluorine intro-
duced as reactant was found to be pre-
sent in the resulting samples, indicating

that none was lost as fluoride ion during

the preparative procedure.

Xray diffraction analysis have been
performed on the characteristics by a
RIGAKU diffractometer. Fig. 1 shows
. the X-ray powder diffraction patterns of
the samples. Samples with y<0.2 are
monophasic and only contain the ortho-
rhombic perovskite phase as in the
undoped sample. However, compositions
with y=05 and 2.0 are multiphasic con-
sisting of BaF;, YF; and CuO in addition
the
ndrcting phase. Orthorhombic unit cell

to perovskite superco-
parameters have been calculated by
least-square refinement of the Xray dif-
fraction data. These parameters are list-

ed in Table L.
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Fig. 1. Xfay powder dnffractuon patterns of

the fluorinated samples.

Table I : Orthorhombic unit cell parameters of the fluorinated sampies.

Lattice parameters(A) Unit cell (b—a)

Y a b c Volume(A?) (b+a)

______ 002 | 384 3.88 11.73 174.77 0.005
______ 0.05 383 387 1170 | 17330 | 0005 |
...... 02 | 38 384 1164 | 17030 | 0004 . |
05 | 380 383 1162 | 16912 | 0004 |
"""" 20 | 38 83 1161 | 16897 | o004 |
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The replacement of oxygen by fluorine

slightly decreases these parameters as ex-
pected from difference in the ionic sizes.
Fig. 2 shows the decrease in the unit cell
volume(Vm)with increasing mole % of
fluorine in the fluorinated samples.
The orthorhombic strain (b—a)/(b+a)
is approximately constant, suggesting
that the ordered vacancy structure is
almost unaffected by fluorine doping.
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Fig. 2 The unit cell volume vs fluorine
content for the fluorinated samples.
The fluorinated samples have moni-

tored with use of solid-state '*F NMR
[18, 19] in order to identily whether
at least some of the fluorine 1s
actually incorporated into the YBa 2Cu
107 - « lattice sites.

Fig. 3(a) and (b) are "F NMR
spectra of the fluorinated samples
with y=2.0 and y=0.2 respectively,
and those are obtained by Fourier
transforming the FID signals avera-
ged 1024 traces following the 90°
pulses of repetition time of 200ms.

The measured spin-lattice relaxation

times of fluorine in the lattice sites,

YF,; and BaF, are approximately 0.2,
10 and 200 seconds, respectively as
shown afterward.[ %] Therefore, the
spectra can be thought of as reso-
nance spectra from fluorine in the lat-
tice sites only, because the repe
tition time is too shorter than the spin-
lattice relaxation times of fluorine in
YF, and BaF. to contain the res-

onance component from fluorine of

those compounds in the spectra.
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Fig. 3 'F NMR spectra from fluorine
in the fluorinated samples with
y=2.0(a) and 0.2(b)
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Fig.4. shows the plots of log[M(c0)-M(T)
] againt T(repetition time) of the sam ples
with y=2.0 and 0.2, where M(e0) is the
saturated magnetization and M(T) isthe

relaxed magnetizations in time T follow

pulse.
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Fig. 4. The plots of log [M(o0) — M(T)]
against T of the samples with

y=2.0(a) and 0.2(b)
For the samples with y=2.0, [M

(00) — M(T)] can be fitted with the

sum of three exponentials, Mexp(—
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T/T11) + Maexp(—T/Tiz2)) + Macexp
(=T/Tw)

The spin-lattice relaxation times and
the ratios of fluorine contents in the
lattice sites, YF3; and BaF; can be ob-
tained from the plots. Here, T1, Ty,
and T); are the spin-lattice relaxation
times In the lattice sites, YF; and
BaF;, respectively, and Mg : My : M;
o i1s the ratio of the amount of fluo-
rine in the lattice site, YF; and BaF,.
Therefore, the value of M/ (M;i+ M,
o+Mso) is the ratio of flusorine in the
lattice sites. The obtained value is ap-

proximately 9.4%.
For the sample with y=0.2, [M(

00) — M(T)] can be fitted to a sin-
gle exponential, because the plot of
log{M(o0) — M(T)] is linear againt
T[] This means that the spin-lat-
tice relaxation time of this sample
has a single value and all of the
added fluorine was incorporated into
the lattice sites. The determined ra-

tios of fluorine contents Incorpo-

rated into the lattice sites in the sam-
ples with y=2.0 and 0.2 are approxi-
mately 9.4 and 100% respectively.
Therefore, 1t is concluded that the
ratio of inconporated fluorine into
the lattice sites is approximately 0.2
mole per mole of compound when

saturated.
Standard four-probe method was

used to measure as a function of
temperature the electrical resistivity
of the sintered pellets. Fig. 5 shows
the results in the proximity for four
samples with y=0.0, 0.02. 0.05, 0.2,
0.5 and 2.0. The valuse of the onset
transition temperatures(Tc) and
transition widths(ATc)are listed in

Table II.

The onset transition temperature
increased slightly with increasing y

and reached a maximum of approXi-
mately 95 K for y>0.2. According to

the BCS theory on the transition tem-
perature that is expressed in terms of

the electronic density of states at the

Tc(onset) A Te

Y (K) (K)

0.0 92.2 08 ______________________
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Table 1 ; Resistive transition temper
atures and transition widths of
the fluorinated samples.

RESISTIVITY Cx 10 moha.cm)

TEMPERATURE ( K )
Fig. 5 Te mperature dependence of resis
tivity.

Fermi-level N(E¢)[15], or Tc oc exp
[-1/N(Ep)], an increase in T¢ re-
flects an increase in N(Ep).

Fluorine is mcnovalent in contrast
to the divalent oxygen, so that incor-
porated fluorine in the YBa,Cu;O;,-x
lattice sites certainly increases N(Ef)

due to this valence difference.[20]

4. Conclusion

(1) XRD measurements indicate that
the cell parameters slightly decre-
ase with increasing mole % of flu-
orine. This fact appears to be due
to the difference of ionic sizes be-
tween oxygen and fluorine. The or-
thorhombic strain is approximately
constant, suggesting that the ordered
vacancy structure is unaffected by

fluorine doping.
— 336~

(2) “F NMR experiments reveal that

the ratio of the amount of fluorine en-
tering into the lattice sites is approxi-
mately 0.2 mole per mole of com-

pound when saturated.

(3) Tc(onset)appears to increase with

F-content up to y=0.2 and then satu-
rates, indicating that the solubility

limit of F is reached.
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