Abstract
Steady-state sublimation vapour pressures of anhydrous bismuth triiodide have been measured by the torsion-effusion method from 488.8 to 570.5 K and equilibrium sublimation pressures were obtained from the steady-state data. The standard sublimation enthalpy changes derived by both second(modified sigma function) and third(average enthalpy method) law methods were 159.316${\pm}$0.055, 137.67${\pm}$1.43 kJ$.$mol-1 respectively. The standard sublmation entropy change derived by modified sigma function was 232.88${\pm}$0.10 J$.$K-1$.$mol-1. The reliable standard sublimation enthalpy change based on a correlation of {{{{ { TRIANGLE }`_{cr } ^{g } }} H{{{{ { 0} atop {m } }}(298.15K) and {{{{ { TRIANGLE }`_{cr } ^{g } }} S{{{{ { 0} atop {m } }}(298.15K), a recommended p(T) equation has been obtained for BiI3(cr) ; lg(p/Pa)=-(C$.$K/T)+5.071lg(T/K)-2.838${\times}$10-3(T/K)-7.758${\times}$103(K/T)2+1.4519 where C={{{{{ { TRIANGLE }`_{cr } ^{g } }} H{{{{ { 0} atop {m } }}(298.15K)/0.019146 kJ$.$mol-1}-456.27.