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Abstract

The crystal structure of an acetylene sorption
complex of vacuum dehydrated fully Cd?t —ex-
changed zeolite A has been determined from
three~dimensional X-ray diffraction data gather-
ed by counter method. The structure was solved
and refined in the cubic space group Pm3m
at 294(1) K ; a=12.202(3) A and Z=1. The c-
rystal was prepared by dehydration at 723 K a-
nd 2.67X107* Pa for 2 days, followed by expos-
ure to 1.60X10* Pa of acetylene gas at 298(1)
K. All six Cd*tions per unit cell are associated
with 6-oxygen rings of the aluminosilicate fram-
ework. They are distributed over two distinguis-
hed threefold axes of unit cell ; two of these
Cd*" ions are recessed 0.694 A into the sodali-
te unit from (111) plane of three 0(3)’s and each
approaches three framework oxides ; the oth-
er four Cd®*" ions extend approximately 0.586
A into the large cavity. These four Cd®" ions
are in a near tetrahedral environment, 2.220(9)
A from-three framework oxide ions and
2.74(7) A from each carbon atom of an acetyl-
ene molecule(which is here counted as a mono-
dentate ligand). Full — matrix least — squares re-
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finement convérged to the final error indices R,
=(.093 and R,=0.105 using the 292 indepen-
dent reflections for which 1>3 o (I).

INTRODUCTION

Successful exploitation of the selective sorptive pr-
operties of aluminosilicates, zeolites, rely upon-an ap-
preciation of the structural features of these molecul-
ar sieves ; i.e., the dimensions of zeolites channels
and cages, the nature of active sites, and the zeolitic
framework oxygens and the sorbed guest molecules.
To this purpose, a variety of the sorption structures
of transition metal exchanged zeolite have been stud-
ied using single crystal X - ray diffraction technique.

In the structures of dehydrated Co ,Na,~AY and
Mn,NasA,? the transition metal ions adopt positio-
ns close to the anionic zeolite framework where they
achieve trigonal near — planar coordination. Upon tr-

eating dehydrated Co,Na,—~A and MnyNa,~A with

acetylene molecules®®, each transition metal ion lies
on threefold axes in the large cavity of unit cell, clos-
¢ to three equivalent trigonally arranged zeolite fram-
ework oxygen atoms and symmetrically to both carb-
on atoms of a C,H, molecule. However, the interac-
tion of acetylene molecule with transition ion are we-
ak, probably resulting from electrostatic attraction
between bivalent cations and the polarizable 7 - elec-
tron density of the acetylene molecule.*

The crystal structure of an ethylene sorption com-
plex of fully Ag+—exchanged zeolite A has been det-
ermined.” In this structure,iabout 3.8 Ag™ ions per
unit cell are recessed ca. 1.2 A into the large zeolite
cavity where each forms lateral © - complex with an
ethylene molecule. ‘

Carter et. al. have studied the sorption of ethylene
at room temperature onto a series of ion — exchange-
d synthetic near faujasites by infrared spectroscopy
and by microcalorimetry.” Of the transition metal ion
examined, Ag+ and Cd*t were found to hold C;H,
most strongly.  Furthermore, the adsorbed ethylene
‘molecule is reported to be freely rotating in all cases,

except for their Agt and Cd** complexes.

As a part of continuing study to ascertain more pr-
ecisely the effect of sorption upon transition metal e-
xchanged zeolite system(i.e., to determine;shifts in ca-
tion position, to observe cation — sorbate interaction-
s, and perhaps to detect resultant changes in sorbed
molecule geometry), crystal structure of an acetylene
sorption complex of vacuum dehydrated Cd®t—exch-
anged zeolite A has been determined by single cryst-
al X-ray diffraction techniques.

EXPERIMENTAL SECTION

Single crystals of the synthetic molecular sieve sod-
ium zeolite 4A, stoichiometry Na;,Al;,Si;2045-
27H,0, were prepared by Chamell’s methed.””'A sin-
gle crystal about 85 x«m on an edge was selected an-
d lodged in a fine capillary. To prepare fully cat
—exchanged zeolite A,an exchange solution of Cd
(NO3), and Cd(OOCCH3;), in the mole fraction of
1:1, with total concentration of 0.05 M, was used. Io-
n exchange was accomplished by allowing the soluti-
on to flow past each crystal at a velocity of approxi-
mately 0.5 cm/'s for 3 days at 298 K. The crystal was
washed for 1 hr with distilled water at 353 K. The cl-
ear, colorless, hydrated Cd®" —exchanged crystals was
dehydrated for 2 days at 723 K and 2.67X10™* Pa.
To prepare the acetylene complex, the crystal was tr-
eated with 1.60 X 10° Pa of zeolitically dried acetylene
for 1 hr at 298(1) K. The resulting reddish yellow cr-
ystal, still in acetylene atomsphere, was sealed in its
capillary by a torch. ‘

Diffraction intensities were subsequently collected
at 294(1) K. The space group Pm3m(no systematic a-
bsences) was used throughout this work for reasons
discussed previously.* Preliminary crystallographic
experiments and subsequent data collection were per-
formed with an automated, four — circle Enraf Noni-
us CAD 4 diffractometer equipped with graphite
monochromator and PDP micro 11/73 computer.
Mo Ka radiation was used for all experiment. The
unit cell constant, as determined by a least — squares
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refinements of 25 intense reflections for which 19°<

26 <24° are 12.202(3) A for acetylene sorption com--

plex of Cds—A.

For this crystal, reflections from two intensity — eq-
uivalent regions of reciprocalspace (# k [, h<k</and
[ k h, I<k<h were examined using ®—26 scan t-
echnique. The data were collected using variable sca-
n speed, ranging between 0.250° and 0.317° in
w/ min. The intensities of three reflections in divers-
e regions of reciprocal space were recorded after eve-
ry three hours to monitor crystal and X-ray source s-
tability. Only small, random fluctuations of these ch-
eck reflections were noted during the course of data
collections. For each region of reciprocal space, the i-
ntensities of all lattice point for which 2§ <70° were
recorded. The raw data from each region were corre-
cted for Lorentz and polarization effects, including t-
the
reduced intensities were assigned to each average ref-

hat due to incident beam monochromatization :

lection by the computer programs, PAINT and WE-
IGHT.'”

An absorption correction(z=2.14mm™, @ca2l=
2.018 gr-em™, Z=1 and F(000)=1046 for acetylene
sorption complex of Cdg—A) was judged to be unn-
ecessary and was not applied.'" Of the 868 pairs of r-
eflections for the crystal of acetylene sorption compl-

ex of Cds—A, only 292 pairs, for which 1>3 ¢

(D), were used in subsequent structure determinations.

The initial structural parameters used in the least

— squares refinement'” were the atomic parameters

of the framework atoms (Si,Al), O(1), O(2),
O(3), and Cd*Tions at Cd(1) and Cd(2)) in de-
hydrated Cd®" exchanged zeolite A treated wi-
th ethylene molecules.'” Anisotropic refineme-
nt of this structural model converged to an R,
index, (2( | Fo— | F. 1) 7/ ZF,), of 0.105
and a weighted R, index, (Sw(F,— | F. | )?
/ ZwWFA'2, of 0.110.

A successive difference Fourier map indicated that
the carbon atoms of the acetylene molecules appear-
ed at the 24 fold position (0.3047, 0.3047, 0.3320) wi-
th a peak height of 1.1(2) e A=. This corresponds cl-
osely to the final result, that approximately 8.0 carb-
on atoms are found very near this position. It was a-
ssumed that one CH, molecule is associated with
each Cd**ion at Cd(1), such coordination is reasoned
that Cd?%ion at Cd(1) recessed approximately
0.586(2) A into the large cavity at a near tetrahedral
4 — coordinate position. Refinement of a model, with
all atoms treated anisotropically except carbon which
was refined isotropically, converged to R;=0.093 and
R,=0.105 (see Table 1). The relatively high R val-
ues are probably due to the some loss of crystallinity
through the processes of ion exchange, dehydration
and gas absorption.

The quantity minimized in the least — squares trea-
tment was (Sw(F,— F. )? and the weights(w) w-
ere the recipocal squares of o (F,), the standard dev-
iation of each observation. Atomic scattering factors
for O~ and (Si,A)'"™" for the zeolite framework,

Table 1. “Positional, Thermal, and Occupancy Parameters for Acetylene Sorption Complexes of Cas—A

13 T C9)

Atom \;2’: X y z b g i:, } B2 \ B3 Bz B Bx Vvariedpa;i]x(:)eld‘
(Si,Al) | 24(k) 0 1817(4) | 3681(4) | 30(3) [18(2) [11(2) 0 0 35) | ‘1.0
0O(1) | 12(h) 0 2000(10)| 5000 80(20) | 50(10) |30(10)( O 0 0 1.0
OQ2) | 12G3) 0 2990(10)| 2990(10) | 40(10) | 43(7) . |43(7) , 0 0 100(20) 1.0
O@) | 24m) | 1117(7) | 1117(7) | 3270(10) | 32(5) [32(5) [49(9) | 10(10) |-10(10) |-10(10) 1.0
Cd(1) 8(g) | 2111(3) | 2111(3) | 2111(3) | 55(2) [55(2) |55(2) |37(5) 37(5) | 37(5) | 0.48(1)| 12
CQ(Z) 8(g) | 1505(7) | 1505(7) | 1505(7) | 75(3) |75(3) |75(3) |123(7) 123(7) | 123(7) | 0.26(1)] 14
C(1) | 24(m) 3130(5% 3130(50)! 3830(70) 9(3)“7 ) 0.34(2) 13

"Positional and anisotropic thermal parameters are given X 10%. Numbers in parentheses are the esd's in the units of the least

significant digit given for the corresponding parameter. "The anisotropic temperature factor=exp [~ ;|h>+ 8 5k 2+ B 33>+ B hk-+ B shi+ 8
k1)]. Rms displacements can be calculated from £ values by using the formula v;=0.225( 3;)*?, where a=12.202(2) A for acetylene sorption
structure of Cd,—A. “Occupancy for (Si=1/2; Occupancy’ for ' (Al)=1/2. YIsotropic thermal parameter is in units of A2

A2d 1%
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Cd* for the exchangeable cations, and C(valence)
for the C;H, molecule were used.'>''¥ The function
describing (Si,Al)! ”** is the mean of the Si’Si*™,
Al°, and AP functions. The scattering factors for
Cd** and (Si,Al)'7*" were modified to account for
the anomalous dispersion correction.'>'® Final posit-
ional, thermal, and occupancy parameters are prese-
nted in Table 1 ; bond length and angles are given
in Table 2.

Table 2. Selected Interatomic Distances(A) and Angles(deg)

(Si,AT-0(1) 1.624(6)
(Si,A)—O(2) 1.664(9)
(Si,A)—O(3) 1.686(8)
Cd(1)—0(3) 2.220(9)
Cd(2)—0(3) 2.26(1)
Cd(1)—C(1) 2.74(7)
c(1)—C() 1.20(9)
O(1)—(Si,A)—0(Q) 112.5(8)
0(1)—(Si,A)—0(3) 111.6(5)
0(2)—(Si,AD—0(3) 1106.6(3)
0(3)—(Si,AD—0@3) 107.9(4)
(Si,A)—O(1)—(Si,Al) 1164(1)

(S1,A)—O(2)—(Si,Al) 150.7(6)
(Si,Al)—O(3)—(Si,Al) 136.7(7)
0(3)—Cd(1)~0(3) 11332)
0(3)—Cd(2)~0(3) 110.9(3)
O(3)—Cd(1)—C(1) 91(1)

Cd(1)—C(1)—C(1) TI(4)

Numbers in parentheses are the estimated standard deviations in
the units of the least significant digit given for the corresponding val-
ue.

DISCUSSION

In the crystal structure of an acetylene sorption co-
mplex of dehydrated Cdg— A, all six Cd*" ions are f-
ound on two distinguished threefold axes of unit cel-
I(see Table 1). About 4.0 Cd*ions at Cd(1) extend-
ed 0.586(2) A into the large cavity from the (111)
plane at O(3)..Each Cd**ion at Cd(1) is a near tetra-
‘hedral environment, 2.220(9) A from three O(3) fra-
mework oxygen atoms and 2.74(7) A from each car-
bon atoms of an acetylene molecule(which is here c-
ounted as a monodentate ligand). To balance electr-
ostaic charge, the 2.0 Cd*¥ions at Cd(2) per unit cell
are recessed 0.694(5) A into the sodalite unit from
the O(3) plane of the 6 — ring. Each of these Cd*™i-

LR R 20

ons at Cd(2) is coordinated to three O(3) framework
oxygens at 2.26(1) A.

"It should be noted that the cation to O(3) distanc-
es presented here have not taken into account the p-
robable but unobserved(due to disorder) conformati-
onal difference between the two sets of O(3) atom-
s ; one set is associated with the Cd*Tions at Cd(1)
and the other with the Cd?tions at Cd(2). Only the
average 12 — memberd ring of framework atoms(see
Fig 1) is determined.

d Cdi
1
02 02
c1 i 1 51
1 01
ca Ca2

Fig. 1. The stercoview of large cavity of vacuum dehydrated Cd,—
A treated with C,H,. The hydrogen atoms, whose positions
were not determined, are not shown. Four acetylene molec-
ules are coordinated to each Cd®%ion at Cd(1). Ellipsoids of
20% probability are used.

To bind one molecule of C,H,, each Cd*" ion m-
oves a small distance(0.354 A, see Table 3 and refe- -
rence 12) from its triad of O(3) atoms, further into t-
he large cage. Accordingly the Cd**—0(3) bonds I-
engthen slightly, from 2.162(7) A in the three — coo-
rdinate dehydrated structure to 2.220(9) A (see Table
2) in the four — coordinated acetylene complex-this
distance a little bit longer than the distance observed
in four — coordinated ethylene(2.210(6) A) complex-
es. The three equivalent O(3)—Cd*t—O(3) angles
have decreased responsively from the nearly trigonal
planar values of 118.9(2)° in the dehydrated complex
to more tetrahedral value of 113.3(3)° in the acetyle-
ne complex(see Fig. 2).

Table 3. Deviations of atoms( ) from the (111) plane at O(3)

oQ) 0.342(7)
cd(1) 0.586(2)
Cd(2) 0.694(5)

A negative deviation indicates that the atom lies on the same side
of the plane as the origin.
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Fig. 2. Cd(C,H,)>" complex in one comner of the large cavity.
‘The approximately tetrahedral coordination about Cd*™ can
be scen. The hydrogen atoms, whose positions were not det-
ermined, are not shown. Ellipsoids of 40% probability are
used.

From our crystailographic study of the ethylene c-
omplex and this acetylene complex, two conclusions
may be reached ;

(1) The sorbed gaseous molecules interact prefere-

ntially with the Cd*" ions and

(2) These interactions are weak, for the resultant

bonds from Cd?**ions to sorbed molecules may
be long, and concomitant changes in Cd**-
framework geometries are small. | That is, the
long Cd?*—framework interactions are main-
tained.

Certainly the most interesting feature of this struct-
ure is the binding of C,H, molecules by Cd* ions.
With all eight carbon atoms(four molecules of C,H,)
distributed about one equipoint(Wyckoff position
24m), the Cd>*-C,H, interaction is symmetric, that
is, each C=C bond is normal to and bisected by a
plane of symmetry which contains a threefold axis(and
hence a Cd2+ion), so that both carbons are equidist-
ant from Cd*T(C*—C =2.74(7) A). With this part-
icular equivalent carbon atom arrangement, a C=C
bond does not intersect a unit cell threefold axis. We
can conclude that the binding in this complex is wea-

k and probably results from the electrostatic interactio-
n between the dipositive Cd*ions and the polarizab-
le 7 —¢lectron density of the CH, molecules.

The high charge of the Cd®™ ions severely inhibits
the synergic bonding'” usually ascribed to symmetric
metal — alkyne complexes, i.e., donation of 7 — ele-
ctron density of acetylene into an empty ¢ — accept-
or orbital of the metal and “back — donation” of acc-
umulated charge from metal d or dp hybrid orbitals
into 7 — acceptor orbitals of acetylene. Acetylene a-
pparently functions solely as an electron donor, perh-
aps as it does in 7 -Cs HMn(CO)Co(CF;),.'® Infrare-
d studies of this compound have shown that the acet-
ylenic stretching frequency is only slightly effected by
complexation, indicating that its triple — bond charac-
ter is retained. In contrast, the C - C triple bond of

) s so

most monoacetylene complexes of platinum
altered that it closely resembles a C—~C double bond.
Perhaps what is observed in this zeolite complex
is an approximate isolation of the ¢ portion of what
would become a ¢ — 7 synergic bond, were the met-
al uncharged and therefore capable of back — donati-
on so as to strengthen the interaction. Angell and Sc-
haffer™” have suggested from i r. studies that this eff-
ect alone may account for the binding of carbon mo-
noxide by Cd*" in X~ and Y- type zeolites.
Because of the combined effects of disorder and
moderate thermal motion of the carbon atom, there

must be some uncertainty in C=C bond distance(C

=C distance in this sturcture is 1.20(9) A). For co-
mparison, the C=C distance in gaseous acetylene is
1.201(5) A. The closest approach distance of carbon
atom to framework oxygen, O(3) is 3.5(1) A. The
hydrogen atom of acetylene, although unlocated, sh-
ould lie in the plane of the ¢5von position. The hyd-
rogen atoms would therefore also be too far from th-
e nearest oxide ions to interact with them, even if th-
e C-H - O angle were linear. Since the energy of
the interaction between acetylene and Cd*ion is not
considered great enough to cause an appreciabledevi-
ation of the hydrogen atoms from the best acetylene
plane, C — H — O should be bent(see Fig 2) and the

A24 12



nwang Nak Koh, Young Wook Han, and Yang Kim

hydrogen should be far, more than 2.0 A from the
nearest oxide neighbors.
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