ITTC 표준기호(3)

(ITTC Standard Symbols)

수조시험연구회(KTTC)

국제수조회의(International Towing Tank Conference)에서는 오래전부터 기호 및 용어위원회(Symbols & Terminology Group)를 구성하여 ITTC 표준기호를 작성해 왔다.

19차 ITTC('90.9. 스페인)에서 채택된 "ITTC 표준기호"는 3가지 주제-General Mechanics, Ships in General, Special Craft-로 분류되어 왔다. 본 내용에서는 이러한 표준기호를 나누어 소개하고자한다(참고문헌: "Standard Symbols and Terminology", 19TH ITTC, Sept. 1990, Madrid, Spain).

SECTION 1 GENERAL MECHANICS

1.3 SOLID BODY MECHANICS

1.3.1 Properties

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
I _{xx}	IXX	Roll moment of inertia		kg m²
I_{yy}	IYY	Pitch moment of inertia		kg m²
I_{zz}	IZZ	Yaw moment of inertia		kg m²
I_{xy}, I_{xz}	IXY, IXZ	Real products of inertia	IXY, IXZ	kg m²
I_{yz}	IYZ		IYZ	
κ_{x} , κ_{xx}	RDGX	Roll radius of gyration	$\left(\frac{I_{xx}}{m}\right)^{\frac{1}{2}}$	m
κ_y , κ_{yy}	RDGY	Pitch radius of gyration	$\left(\frac{I_{yy}}{m}\right)^{\frac{1}{2}}$	m
κ_z , κ_{zz}	RDGZ	Yaw radius of gyration	$\left(\frac{I_{zz}}{m}\right)^{\frac{1}{2}}$	m

1.3.2 Forces

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
F _s , Q	FS	Shearing force		N
F, W	F, WT	Load, concentrated		N
K, M, N	MX, F(4)	Components of moment rela-		Nm
M _x , M _y , M _z	MY, F(5)	tive to body axes		
M ₁ , M ₂ , M ₃	MZ, F(6)			
F4, F5, F6				
X, Y, Z	FX, F(1)	Components of force relative		NT.
F _x , F _y , F _z	FY, F(2)	to body axes		N
F ₁ , F ₂ , F ₃	FZ, F(3)			
M _B	MB	Bending moment in general	Appropriate sub scripts may	Nm
			be added (as M _{BH} , M _{BY})	
M _T	MT	Twisting or torsional		Nm
		moment		•
q	UNQ	Load per unit length		N/m
w	WPUL	Weight per unit length		N/m
W, F	WT, F	Load, concentrated		N

1.3.3 Rigid Body Motions

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
p, q, r	OMGX, V(4)	Components of angular axes		1/s
ω_x , ω_y , ω_z	OMGY, V(5)	velocity relative to body		
V4, V5, V6	OMGZ, V(6)	axes		
u, v, w	VX, V(1)	Components of linear vel-		m/s
u_x , u_y , u_z	VY, V(2)	ocity relative to body axes		
u_1, u_2, u_3	VZ, V(3)			
V_i	V(l)	Components of linear gener-	i = 1, 2, 3	m/s
		alized motion relative to	i = 4, 5, 6	1/s
		body axes		
ù, v, w	DUDT	Rates of change of com-		m/s²
	DVDT	ponents of linear velocity		
	DWDT	relative to body axes		

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
p, q, r	DPDT	Rates of change of com-		$1/s^{2}$
	DQDT	ponents of angular vel-		·
	DRDT	ocity relative to body axes		
α	ACCA	Angular acceleration	$\frac{\mathrm{d}\omega}{\mathrm{d}t}$	$1/s^2$
α	ALFA	Angle of attack	The angle of the longitudinal body	1
			axis from the projection into the	
			principal plane of symmetry of the	
			velocity of the origin of the body	
			axes relative to the fluid, positive	
			in the positive sense of rotation	
			about the y-axis	
β	BET	Angle of drift or side-slip	The angle to the principal plane of	1
			symmetry from the velocity vector	I
			of the origin of the body axes	i
			relative to the fluid, positive in the	'
			positive sense of rotation about the	
			z-axis	'
$\overline{\beta}$	ВЕТМ	Mean drift angle		1
r	GAMR	Projected angle of roll or	The angular displacement about	1
		heel	the x _o axis of the principal plane of	
	}		symmetry from the vertical, posi-	
			tive in the sense of rotation about	!
			the x _o axis	
θ	TETP	Angle of pitch or trim		1
		(positive bow up)		į
θ_{A}, Ψ_{A}	TETPA	Pitch amplitude	: 	1
φ	PHIR	Angle of roll, heel or list		1
		(positive starboard side		
,	Dille 4	down)		4
φ _A	PHIRA	Roll amplitude		1
Ψ, X	PSIY	Angle of yaw, heading or		1
		course (positive bow to		
nr v	DCIVA	starboard)	:	1
$ \Psi_{A}, X_{A} $ $ \overline{\Psi}, \overline{X} $	PSIYA PSIYM	Yaw oscillation amplitude		1
Ψ, Λ	F-01 I IVI	Mean yaw		1

1.4 ENVIRONMENTAL MECHANICS

1.4.1 Waves

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
a	AMP	Amplitude		m
ai	AI	Discrete amplitude spectrum of a repeating wave	$\mu(t) = \Sigma a_i \cos(2\pi f_i t + \phi_i)$	m
a_c	AC	Zero crossing wave crest height		m
a _{c, max}	ACMAX	Maximum zero crossing crest height		m
a _T	АТ	Zero crossing wave trough		m
a _{t, max}	ATMAX	Maximum zero crossing wave trough excursion		m
b	В	Bandwidth of spectral revolution	Sampling frequency divided by the number of transform points	Hz
c	С	Phase velocity or celerity		m/s
Co	CO	Deepwater wave celerity		m/s
Cg	VWG	Group velocity		m/s
C _r	CR	Average reflection coefficient		1
$C_r(f)$	CRF	Reflection coefficient function		1
$D(f, \theta)$		Directional spreading function	$S(f,\theta) = S_{\eta}(f) \cdot D(f,\theta)$	deg
f	F	Frequency	$\int_{0}^{2\pi} D(f, \theta) \ d\theta = 1$	Hz
f,	FP	Spectral peak in frequency	Frequency at which $S_{\eta}(f)$ is a maximum	Hz
h	HD	Water depth		m
Н	Н	Wave height		m
H _d	HOD	Zero downcrossing wave height		m
$\overline{\overline{H}}_{d}$	HAVD	Average zero downcrossing wave height	! !	m
H _{mo} , H _s	НМО	Estimate of significant wave height	$4\sqrt{m_0}$	m
Hu	HOU	Zero upcrossing significant wave height		 m
$\overline{\overline{H}}_{\mathrm{u}}$	HAVU	Average zero upcrossing wave height		m
H _v	HV	Wave height estimated from visual observation		m

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
H _{1/3} , d	H13D	Zero downcrossing signifi-	Average of the highest one third	m
		cant wave height	zero downcrossing wave heights	
H _{1/3} , u	H13U	Zero upcrossing significant	Average of the highest one third	m
		wave height	zero upcrossing wave heights	
Нσ	HSIGMA	Estimate of significant	$1\sigma_n$ where σ_n is the standard devi-	m
		wave height from RMS of	ation of $\eta(t)$	
		wave elevation record		
Lw, A	LWA	Wave length	Measured direction of wave pro-	m
			pogation	
m _n	MN	n-th moment of spectral	$\int_{11}^{f2} f^{n}S(f) df$	m ² /s ⁿ
		density		
$S_i(\omega), S_i(f)$	SIF	Incident spectral density		m²/Hz
$S_r(\omega), S_r(f)$	SRF	Reflected spectral density		m²/Hz
$S_{\eta}(f), S_{\zeta}(\omega)$	SZF	Wave spectral density		m²/Hz
$S_{\rho}(f, \theta)$	STHETA	Directional spectral density		m²/Hz/deg
$S_{\zeta}(\omega, \mu)$				
Т	Т	Wave period	1/f	S
T_d	TD	Wave period by zero		S
_		downcrossing		
$\overline{\mathrm{T}}_{\mathtt{d}}$	TAVD	Average period by zero	$\overline{T}_d = \overline{T}_u = \overline{T}$	S
		downcrossing		
T _{H1/3} , d	TH13D	Significant wave period,	The average of periods of the high-	S
		zero downcrossing	est one third of zero downcrossing	
_			wave heights	!
T _{H1/3} , u	TH13U	Significant wave period,	The average of periods of the high-	S
		zero upcrossing	est one third of zero upcrossing	
T.	TDA	A	wave heights	
T _m	TM TP	Average wave period Spectral peak period		S
T _R	TR TU	Record length Wave period by zero up-		S
Tu	10	crossing		3
\overline{T}_{u}	TAVU	Average period by zero		s
l u	IAVU	Average period by zero upcrossing		3
T	TV	Wave period obtained visu-		s
T_{v}	1 V			
	<u> </u>	ally	<u> </u>	

Standard	Compute	er		
Symbol	Symbol	Name of Concept	Definition or Explanation	SI Unit
T _{o, 1}	TO1	Average period from me	D- m ₀	
		ments	m_1	s
T _{0, 2}	TO2	Α		
- 0, 6	102	Average period from mo	$\overline{m_0}$	s
α, θ	ALDIIA	ments	√ m ₂	
α, υ	ALPHA THETA	Wave direction		deg
δ, f	DF	Basic frequency increment		
		in discrete Fourier analysis		Hz
$\eta(t)$	ETA		z positive upwards convention	
		vation referred to mean	a spiratas convention	m
		water level		
η_c	ETAC	Crest elevation referred to		m
,-		mean water level		111
$\eta_{\mathtt{T}}$	ЕТАТ	Trough elevation referred	ł	m
		to mean water level	i i	
η_{max}	ETAMAX	Maximum surface ele-		m
		vation in a wave record		
7) min	ETAMIN	Minimum surface elevation		m
σ	SIGMA	in a wave record Standard deviation or	T	m
Ü	OldWA	RMS if mean value is re-		111
		moved		
τ	TAU	Shift variable time		s
ω	OMEGA	Angular frequency	$2\pi f$	rad/s
$\zeta(t)$	ZETA	Instantaneous surface ele-	z positive upwards convention	m
		vation referred to mean		
	GE ATTS	water level		,
C	CTAVD	Wave celerity	Velocity of wave crest	m/s
c _g f	VWG FR	Group velocity of waves Frequency		m/s 1/s
Lw, λ	LW	Wave length	From crest to crest	m
T, X	TCAP	Apparent wave period (ac-	The time elapsing between the oc-	s
		cording to zero crossings)	currence of two successive upward	-
		- - ,	crossings of zero	
T	TCW	Wave period		s
$S_{\zeta}(\omega, \mu)$	S2ZET	Two dimensional spectral		1
$S_{\theta}(\omega, \mu)$	S2TET	density		Ì
etc.	etc.			

第28巻 第 3 號

Standard	Computer	Name of Concept	Definition or Explanation	SI Unit
Symbol	Symbol			1
$S_{\zeta}(\omega)$	S1ZET	One dimensional spectral		
$S(\theta)$	SITET	density		
etc.	etc.		$2\pi/\lambda$	1/m
κ	CAPW	Wave number	The horizontal distance between	m
$\overline{\lambda}$	LWA	Apparent wave length (ac-	two successive upward crossings of	
		cording to zero crossings)	zero	
		Instantaneous Wave	Zeio	m
ζ	ZET	Ilistantaneous		
		elevation .		m
$\zeta_{\rm A}$	ZETA	Wave amplitude	thinks of a wave from trough to	m
ζ_{w}	ZETW	Height of a wave	Height of a wave from trough to	111
			crest	·

1.4.2 Ice Mechanics

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	SI Unit
Sı	SALTI	Salinity of ice	Weight of salt per unit weight of ice	1
Sw	SALTW	Salinity of water	Weight of dissolved salt per unit weight of saline water	1
t ^o A	TEMPA	Temperature of air		$^{\circ}\!\mathbb{C}$
tŸ	TEMPI	Local temperature of ice		$^{\circ}$ C
t w	TEMPW	Temperature of water		°C
$\delta_{\rm l}$	DELI	Deflection of ice sheet	Vertical movement of ice surface	m
ϵ_1	STI	Ice strain	Elongation per unit length	1
$\varepsilon_{\rm I}$	STRAT	Strain rate	$ \varepsilon_1 = \frac{\partial \epsilon}{\partial \tau} $	1/s
μ_{I}	POISI	Poisson's ratio of ice		1
$\nu_{\rm A}$	NUA	Relative volume of air	Volume of gas pores per unit	1
			volume of ice	
$ u_{ m B}$	NUB	Relative brine volume of	Volume of liquid phase per unit	1
		dopant	volume of ice	
$\nu_{\rm o}$	NUO	Total porosity	$ u_{\rm O} = \nu_{\rm A} + \nu_{\rm B} $	1
$\rho_{\rm l}$	RHOI	Mass density of ice	Mass of ice per unit volume	kg/m³
$ ho_{SN}$	RHOSN	Mass density of snow	Mass of snow per unit volume	kg/m³
ρ_{W}	RHOW	Mass density of water		kg/m³
ρ_{A}	RHOD	Density difference	$\rho_{d} = \rho_{W} - \rho_{I}$	kg/m³
σ_{C}	SIGCS	Compressive strength of ice		Pa
σ_{F}	SIGF	Flexural strength of ice		Pa
σ_{T}	SIGT	Tensile strength of ice		Pa
$ au_{S}$	TAUS	Shear strength of ice		Pa