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Robustness Properties of Kalman Filters for Systems
with Delays in State and Output

F M |t

# et

(Sang-Jeong Lee - Seok-Min Hong)

Abstract - This paper presents robustness properties of Kalman filters for linear
time-invariant systems with delays in both the state and the output. The circle
condition concerning the return difference matrix is derived. From the circle condition,
it can be seen that the Kalman filter guarantees such nondivergence margins as (}2,00)
gain margin and +60° phase margin, which are the same as those for ordinary
systems. The results in this paper might be expected to make theoretical background
on extending the LQG/LTR method to systems with delay in the output.

1. Introduction

During the last decade, great attention has been
devoted to the multivariable robust control design

[1]~[6]. Most of theoretical results developed
during this period have a remarkable feature that
they have extended classical frequency-domain
concepts to multivariable systems. In particular,
the LQG/LTR method for ordinary systems has
received special attention as a robust control
design method. As is well known, the the LQG/
LTR method owes to two theoretical results.
One is the attractive robustness properties of LQ
regulators and Kalman filters[4, 7], and the other
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is the maximally achievable accuracy properties
of LQ regulators and Kalman filters[8]. Based on
these two results, the LQG/LTR method utilizes
the robustness or sensitivity recovery procedure in
LQG regulator designs.

There have been made some efforts to analyze
the robustness properties of LQ regulators and
Kalman filters for delayed systems, W.H. Kwon

(97 has first derived the circle condition of LQ
regulators. Later, K. Uchida and E. Shimemura

[10] and W.H. Lee and B. l.evy[11] derived the
same circle condition independently. Using the
robust stability condition for ordinary systems|[5],
W.H. Lee and B. Levy[11] showed that LQ regu-
lators for state-delayed systems guarantee the
same stability margins as those for ordinary sys-
tems. W.H. Kwon and S.J. Lee[12] derived the
robust stability condition for delayed systems, and
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showed that LQ regulators and Kalman filters for
state-delayed systems guarantee the same robust-
ness margins as those for ordinary systems. In
addition, W.H. Kwon and S.J. Lee[12] proved the
cheap control property of LQ regulatcrs for state-
delaved systems and extended the LQG/LTR
method to state-delayed systems.

For input-delayed systems, S.J. Lee et al.[13]
derived guaranteed stability margins of LQ regula-
tors in terms of system parameters, and extended
the LQG/LTR method to systems with delayed-
input only. For systems with delays in both the
state and the input, W.H. Kwon and S.J. Lee[14]
analyzed guaranteed stability margins of LQ regu-
lators and generalized the LQG/LTR method.

To the authors’ knowledge, however, there have
been reported no literatures concerning the robust-
ness property of Kalman filters or the LQG/LTR
method for system with delay in the cutput. In this
paper, the robustness property of Kalman filters
for systems with delays in both the state and the
output is investigated. More precisely, the circle
condition concerning the return difference matrix
of Kalman filters will be derived. I3ased on the
circle condition together with the robust stability
condition’ 121, it will be shown that Kalman filters
for systems with delays in both the state and the
output guarantee the same nondivergence margins
as those for ordinary systems. The results in this
paper might be expected to make theoretical back-
ground on extending the LQG/LTR method to
systems with delays in both the state and the
output.

2. Kalman filters with delays in state and
output

We consider the following system :

%x(f):A(.x(t)+A(,x(t~h)+w(t) (1)
y(1)= Cox{1)+ Cix(t — h)+ v(t) (2)

where x(1) is an »-dimensional state vector, y(¢)
is an m-dimensional output vector ; Ay, A, Cy, and
C, are constant matrices with appropriate dimen-
sions ; the processes w(¢) and »(¢) are zero mean
white Gaussian noise processes with covariance
intensity  and R, respectively. Furthermore, the
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noise processes w(¢), v(¢), and the initial condition
are assumed to be independent of each other. The
Kalman filters for the systems(1)~(2) is well
known and given by[15]

% T =Acx(t])+ A (t—hit)

HPACT+P(—hCTIR™!
[¥(H)— Cox (t11)— Ciz(t— Alt)]
(3)

(R =50 hlt—h)+f:[Pl(~o~— nC'
+P2(_(7_1’Z, *h)ClT]Rk]
-(yt+o)— Coxlt+olt+0)
—Cii(t+o—hlt+0)]ldo (4)

with £(8|0)=0 for — < 8<0, where P, is an n X
n constant matrix, P(8) and P8, ») are piec-
ewise absolutely continuous z X » matrices such
that

0= AUR}+ Pnf/luT*AlPl('_ h) + PIT( - h)AIT
+ Q*[Po \nr“"PlT( - h)C1T]R7I
[C()Po"‘ ("][)1(7}1)] (5
L B(O)= - POAT—PLO. — AT
+[P1(0)C1)T + Pz(ﬁ, — h)C1T]R'I
[C()P(H‘ Cl])!< *h)] (6
0 d _ -
(5() F’%)Pz([), 7y ={P(0)C)

FPA8, = RG] - RGP (9)
+‘C1P2T(77v - h)] (7)

with the boundary conditions

Pi0)= P, PA6, 0)=P(6) (&
and the symmetry conditions

R7=P, P.'(8, 7)=PAn, 9) (9)

for —h< <0 and —h<yp<0

3. Robustness Properties of Kalman Filters

The block diagram of the Kalman filter for
systems with delays in both the state and the
output is shown in Fig. 1, where »(f) denotes

the innovation vector
V() =y(t)— Cox (2|8)— C1Z(t — hlt) (10)

The output estimate #(#) and the innovation v(f)
have the following relation in the frequency
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Fig. 1 Block diagram of Kalman filters.

domain.
F()=[(Co+ Cre ") O(s)(Are ™ Hy(s)+ H))
+ Cie ™ Hy(s)]u(s) 11)
where
H=(P.C"+P"(—h)C)R™! (12)
BLs)=(P(—35)Co"+ P{—s)C:\T)R™! (13)
P(s)= [ e*P(6)do (14)
Pz(s)=—[:'e”Pz(6, —h)df (15)
O(s)=(s] — Ap— Are ") (16)

The return difference matrix 7(s) at the filter
input is defined by

T(s)=1+(Cot+ Cre ") O(s)(Are™ " Hs)+ H))
+ Cre " Hs) (17)

To derive the circle condition concerning the
return difference matrix, we will transform the
operator-type Riccati equations (5) ~(7) to alge-
braic ones in the frequency domain.

LEMMA 1 : The operator-type Riccati equations
(5) ~ (7) with the boundary condition (8) can be
represented in the frequency domain as follows:

0=—A)Po— PA(—s)— AiPe ™
—PA e+ AP(— )+ PT(— AT
+ Q-G +P(-hCTIR™
[CoPo+ CP(—h)] (18)
0=Ps)AT(s)+ (Pi(s)— Ps)e") AiTe "
+Pl—he =P+ [P(s)Co"
+ Py(s)CTIR [ CoPo+ CP(— R)] (19)
0=P"(s)— P (s)e™ + P(—s)— Pf—s)e™*
—[P(=s)CT+ PL—3$)C/TIR !
[CPT(s)+ C;f‘g’(s)] (20)
where '

A(S):SI“AO‘ A (21)

Proof : See Appendix
Now we can state the following theorem con-
cerning the return difference matrix.
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THEOREM 1 : The return difference matrix
T (s) satisfies the following relation in the frequen-
cy domain ;

TGw)RT *(Gw)=R+(Co+ Cie ™M) 0(juw)Q
O*(Gw)(Co+ Cre™™)*  (22)

where* denotes the complex conjugate transpose.
Proof : See Appendix.

For investigating the robustness property of
Kalman filters, it is convenient to represent the
uncertainties such a multiplicative perturbation
factor as shown in Fig. 2, where [7+ L(s)]"' is
the uncertainty of the system reflected to the loop
breaking point X. Since the left-hand side of the
equation(22) 1is hermitian and (C,
+ Cie M) OGw) QO *jw)(Co + Cre 7")* 20, we
can obtain the circle condition.

T(w)RT*(jw)=R (23)

Note that for single-output systems the relation
(23) becomes |T(jw)|*>1, from which it can be
seen that Kalman filters guarantee such nondiver-
gence margins as (1/2, o) gain margin and +60°
phase margin. For multivariable systems, the rela-
tion(23) is inadequate for rebustness analysis,
since a bound on g 7(jw)] is difficult to obtain
from the relation(23) where oma(-) denotes the
minimum singular value. Hence, we define a
modified return difference matrix

T(jw)=R™"2 T (jw) R (24)

which satisifes

e I TS S
L oy :
multiplicetive
perturbations

Fig. 2 Kalman filter configuration for robust-
ness analysis.
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Fig. 3 Modified Kalman filter configuration for
robustness analysis.
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TGw) T*Gw)=1 (25)

for 0< w< oo. The configuration with the modified
return difference matrix i» shown in Fig. 3. The
nondivergence margins at the loop breaking point
X in Fig. 2 turn out to be the same as those at the
loop breaking point XX in Fig. 3 if [7+ L(s)]™"
and R are diagonal, since Fig. 2 with the pertur-
bation [/+ L(s)]™" inserted at the loop breaking
point X is equivalent, in view of filter divergence,
to Fig. 3 with the perturbation R "?[]
+ L(s)]7'RV* is inserted at the loop breaking point
XX under the condition that [/+ L(s)]"' and R
are diagonal[4].

With the configuration in Fig. 3, we will present
the guaranteed nondivergence margins of Kalman
filters. Henceforth, for simplicity we assume the
system(1) ~ (2) has no poles on the imaginary
axis.

THEOREM 2 : The Kalman filters(3) ~ (4) for
the system (1) ~ (2) guarantee the same nondiver-
gence margins as those for ordinary systems, that
is, (1/2, o) gain margin and *60° phase margin in
the presence of noninteracting perturbations at
each input loop when R is diagonal.

Proof : See Appendix.

Note that the result in Theorem 2 is not dual
to that in [14] concerning the guaranteed stability
margins of LQ regulators for systems with delays
in both the state and the input. If Kalman filters
are derived using such an innovation vector as

wW()=y(t)— CoX(t|t)— Cix(t—hlt—h) (26)

instead of the innovation vector(10), the result
might be expected dual to that in [14]. Finally, it
should be mentioned that for systems with delay in
the output only, that is, in case of A,=0, the same
result as in theorem 2 is obtained.

4. Conclusions

In this paper, it is shown that Kalman filters for
systems with delays in both the state and the
output guarantee the same nondivergence margins
as those for ordinary systems. For this analysis,
the circle condition concerning the return differ-
ence matrix for Kalman filters is derived. The
results in this paper generalize the well-known
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ones for ordinary systems and can be extended to
more general delayed systems.

Finally, it should be mentioned that the LQG/
LTR method for systems with delays in the output,
regardless of the existence of delay in the state,
remains for further investigations.

Appendix

Proof of Lemma 1 :

The equation (18) can be directly derived from
the equation(5). Multiplying both sides of the
equation(6) by % and intergrating from — 4 to 0
with respect to 4 yeild the eugation (19). Multiply-
ing both sides of the euqation(7) by ¢*7 % and
integrating from — 4 to (0 with respect to » and @
yield the euqation (20). This completes the proof.

Proof of Theorem 1 :
From the return difference matrix equation(17)
and (11) ~ (14), it follows that

T()RT™(—s)
:[]+(C0+ Cle's")@(s)(Ale’s"Hz(s) + Hl)
+ Cie ™ H)s)] + R[I +(H,"(—5)A e
+HD)O(—s)(G"+ CiTe™)
+HzT(—s)C1Tes"]
=R+ (Co+ Cie ™) O(s){(Are " Hy(s)
+H)R+ Cie ™H(s)R+ R(H,"(—s)
Ae+ HNOT(—s)Co"+ Ci"e™)
+RH,"(=s)CiTe* +(Co+ Cie™™")
O(s)(Are™**Hy(s)+ HD)R(H,"(—s)
ATe” +HNO(—5) - (Co”+ CiTe™)
+(Cot+ Cre ) O(s)(Are " Hys)
+H)R(H(—s)Ci7e ")+ Cie™
H(s)R(H:"(—5s)A,"e**
+H DO (—s)Co" + Cie™)+ CLHAs)
RH,"(—35)C (27)

Using Lemma 1, (27) becomes

T(s)RT™(—s)
= R +(C0+ Cle-.Sh)@(s)Q@r( _s)(CUT
+Ci"e™) (28)

Therefore, the euqation (22) is obtained from the
euqation(28) by replacing s by jw. This complete
the proof.
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Proof of Theorem 2:
Let G(s) be a loop transfer function matrix
which is stable given by

G(S):((:n+ C1€7‘Sh)@(s)
(Are " Hys)+ H)+ Cie His)  (29)

and G(s) be perturbed system such that
G)= G I+ L{s)™ (30)
where [.(s): diag[h{t)&(s)-Ia(s)] and R is also

diagonal. From the circle condition(25), it follows
that
Omiol T (1)) =1 (31)

for 0<w<« . Using the condition(31) and the
robust stability condition for the delayed system

[12], it can he seen that the perturbed system is
stable if the condition

1LGw)= 1 Vi<w<oo, i=1,2, . m (32
is satisfied.
In order to obtain gain margins, let

l(s)=1. [, real (33)

then Equation(32) becomes

1. 1

250 39
Thus, the guaranteed gain margin is (1/2, ),
Similary, to obtain phase margins, let

fgl_“: JPI(S) AR 1

145y~ ¢ 9ils)  rea (35)
then Equation (32} becomes

cosgi(s)>1/2 (36)

From Equation(36), it can be seen that the
guaranteed phase margin is 60’
This completes the proof.

This paper was supported in part by NON
DIRECTED RESEARCH FUND, Korea Re-
search Foundation, 1990 and by the Agency
for Defence Development in Korea under
Grant ADD-90-2-09A.

REFERENCES

[1] Special Issue on Linear Multivariable Con-

1306

Trans KIEE, Vol. 40, No. 12, DEC. 1991

trol System, IEEE Trans. Automat. Contr,,
Vol. AC-26, no. 1, Feb. 1981,

[2] Special Issue on Sensitivity and Robustness,
IEE Proc., Vol. 129, part D, No. 6, Nov.
1982,

[3] L.H. Keel et al., “Robust control with
structured uncertainties,” IEEE Trans. Auto-
mat. Contr., Vol. AC-33, No. 1, pp.
68~78, Jan. 1988,

[4] N.A. Lehtomaki, N.R. Sandell, and M.
Athans, “Robustness results in LQG based
multivariable control designs,” IEEE Trans.
Automat. Contr., Vol. AC-26, No. 1, pp.
75~93, Feb. 1981,

[5] J.C. Doyle and G. Stein, “Multivariable feed-
back design: Concepts for a classical/mod-
ern synthesis,” IEEE Trans. Automat. Contr.,
Vol. AC-26, No. 1, pp. 4~16, Feb. 1981,

[6] B.A. Francis, J.W. Welton, and G. Zames,
“Hoo-optimal feedback controllers for linear
multivariable systems,” IEEE Trans. Auto-
mat. Contr., Vol. AC-29, No. 10, pp.
888900, Oct. 1984,

[7] M.G. Safonov and M. Athans, “Gain and
phase margin of multiloop LQG regulator,”
IEEE Trans. Automat. Contr., Vol. AC-22,
No. 2, pp. 173~179, Apr. 1977,

(8] H. Kwakernaak and R. Sivan, “The max-
imally achievable accuracy of linear optimal
regulators and linear optimal filters,” IEEE
Trans. Automat. Contr., Vol. AC-17, No.
1, pp. 79~86, Feb. 1972,

[9] W.H. Kwon, “Infinite-time regulator for a
class of functional differential systems and a
minimum control energy problem for ordi-
nary differential systmes,” Ph. D disserta-
tion, Brown Univ., Province, RI, June 1976,

110] K. Uchida and E. Shimemura, “Closed-loop
properties of the infinite-time linear qua-
dratic optimal regulator for systems with
delays,” Int. J. Contr., Vol. 43, No. 3, pp.
773~779, 1986,

[11] W.H. Lee and B. Levy, “Robustness prop-
erties of linear quadratic hereditary differen-

tial systems,” in Proc. Conf. Decision Contr.,
pp. 1267~1272. 1982,
[12] W.H. Kwon and S.J. Lee, “LQG/LTR



BERE B 40% 1258 1991F 128

methods for linear systems with delay in
state,” IEEE Trans. Automat. Contr., Vol.
AC-33, No. 7, pp. 681~689, July 1988,

131 S.J. Lee, W H. Kwon, and S.W. Kim, “LQG/
LTR methods for linear input-delayed sys-
tems,” Int. J. Contr., Vol. 47, No. 5, pp.
1179~1194, May 1988,

[14] W.H. Kwon and S.J. Lee, “LQG/LTR
methods for linear systems with delays in
both the state and the input,” J. KIEE, Vol.
1, No. 2, pp. 110~117, Sep. 1988,

[15] R.H. Kwong and A.S. Willsky, “Estimation
and Filter stability of stochastic delay sys-
tems,” SIAM J. Contr., Vol. 16, pp.
660~681, July 1978,

ol A Y (FHET)

E 1957 8¢ 1594, 1979d Agd
o Azt 29, 19819 F o

9 Az 2444, 19874

) 2 sty AolAEREE (T
uh, AR Fdd T AAFTEY 2a

el 3¢ @R AZx|odol EMSE AlAHE Y atEE AAY BN

EM 0] (AHER)

19579 119 194, 19794 e
Fd FAFAFEHY EF4. 19904
2 WE Axped 2494
D, A e ey Azt
upal A g Febabstel T Al

1307



