A Study on the Solution of the Epidemic Model Using Elementary Series Expansions

초등급수 전개에 의한 유행병 모델의 해법에 관한 연구

  • 정형환 (동아대학교 공과대학 전기공학과) ;
  • 주수원 (동아대학교 공과대학 전기공학과, 부산외국어대학 전산학과)
  • Published : 1991.09.01

Abstract

A solution for the course of the general deterministic epidemic model is obtained by elementary series expansion. This is valid over all times, and appears to hold accurate]y over a very wide range of population and threshould parameter values. This algorithm can be more efficient than either numerical or recursive procedures in terms of the number of operations required to evaluate a sequence of points along the course of the epidemic.

Keywords

References

  1. Z. Phys. v.209 Solution by means of lie-series to the laser rate equations for a giant pulse including spontaneous emission Abate,E.H(et al.)
  2. Proc. Royal Soc. Ser. A v.115 Contribution to the Mathematical theory of Epidemics Kermack,W.O.;Mokendrick,A.G.
  3. Appl. statist v.2 stochastic processer or statistic of chang Bartlett,M.S.
  4. Comput. Biol. Med. v.3 Mathematical Models for the spread of Epidemics Ludwing,D.
  5. J. Reine Angew. Math. v.306 Asympototic Estimates of the solution of Nonlinear Integral Equation and Asymptotic speed for the spread of populations Thieme,H.R.
  6. The Mathematical Theory of Infectious Diseases and Its Applications Hafner Bailey,N.T.J.
  7. processings of the Third Berkeley Symposium on Mathematical Statistics and pribability v.4 Determinstic and stochastic epidemice in closed population Kendall,D.G.
  8. J. Math, Biol. v.10 no.3 Periodic solution of an Epidemic model Gripenberg,G.
  9. Biometrics v.27 Marcov chain Methods in chain Bionomial Epidemic Models Gani,J.;Jerwood,D.
  10. 전기학회지 v.30 인플루엔자 유행관리의 수학적 모델화 정형환;박상희
  11. 박사학위논문, 연세대학교 대학원 마르코프 과정을 이용한 인플루엔자 유행특성에 관한 연구 정형환
  12. 의공학회지 v.9 no.1 Pontryagin 최소 원리를 이용한 최적 접종에 관한 연구 정형환