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Abstract

This paper develops an intertemporal general equilibrium model of asset pricing
with taxes under the noisy and the incomplete information structure and examines
theoretically the stochastic behavior of general equilibrium asset prices in a one-good,
production, and exchange economy in continuous time markets. The important featu-

res of the model are its integration of real and financial markets and the analysis
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of the effects of differential tax rates between ordinary income and capital gains.
The model developed here can provide answers to a wide variety of questions about

stochastic structure of asset prices and the effect of tax on them.

KEYWORDS : Noisy information, incomplete information, innovation process, con-

tingent claim, Itd6 process, capital gains tax, ordinary income tax.

1. Introduction

This paper is a theoretical examination of the stochastic behavior of general equilib-
rium asset prices in a one-good, production, and exchange economy in the presence
of personal taxes in continuous-time markets. Specifically, this paper develops an
intertemporal general equilibrium model of asset pricing with taxes under the noisy
and the incomplete or partial information structure. The important features of the
model are its integration of real and financial markets and the analysis of the effects
of differential personal tax rates between ordinary income and capital gains income
realized from changes in asset prices. Another important feature is that the formula-
tion of the perception of uncertainty is regarded as the framework of two types
of information structure : noisy and incomplete.

The noisy information structure is the perfect knowledge of the state variables
disturbed by some noise, which can be represented as a Wiener process random
variable. On the other hand, the incomplete or partial information structure implies
that the underlying state variables are unobservable, but that there exists an observa-
ble instrument that reveals partial information about the true state variables. In
this case, the conditional process of the state variables, conditional on this instrument
that the individuals éontinuously observe, gives them the information about the state
variables that are continuously updated. Individuals can make consumption, produc-
tion, and investment decisions instantly and continuously on the basis of this informa-
tion. Thus the innovation process represents new information and hence is a sufficient
statistic.

In this way we will devise a theory that is capable of addressing itself to general
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equilibrium questions such as (1) What is the impact of an increase in personal
taxes upon the relative prices of riskless and risky assets 7 (2) What is the impact
of an increase in progressivity of the personal ordinary income and capital gains
tax rates upon the relative price structure of risky assets 7 (3) What is the relationship
among the equilibrium expected rates of return on assets under incomplete or partial
information when ordinary income and capital gains are taxed differently ? (4) What
is the impact of incomplete information about the state variables upon the price
structures of assets in the capital market ? (5) What is the impact of incomplete
information upon the physical production processes ?

Cox, Ingersoll, and Ross(1985) developed a general equilibrium capital asset pricing
model in a continuous-time framework by assuming perfect knowledge of the process
of the state variables in the economy. They derived a relationship between asset
prices and underlying variables in an economy. In their model, asset prices and
their stochastic properties are determined endogenously. They did not, however,
introduce the differential tax rates and the incomplete informational structure. The
major difference between their paper and ours is that we will incorporate those .
two important aspects to develop an intertemporal general equilibrium model of
asset prices.

In an intertemporal setting, Merton(1973) developed a relationship among the equi-
librium expected rates of return on assets. He showed that if the investment opportu-
nity set was constant, then the intertemporal model converged with the single-period
capital asset pricing model, and that if the opportunity set was stochastic, then the
intertemporal model would contain the effects that could not be captured by the
static single-period model. Rhee(1987) derived the relationship among the equilibrium
expected rates of return on assets in a continuous-time framework by assuming
the presence of differential income and capital gains tax rates. His intertemporal
capital asset pricing model with taxes was different from the static, single-period
tax model under a constant investment opportunity set. He derived an intertemporal
tax model in a stochastic investment opportunity set which captured the effect that
could not be explained by a static, single-period model. He also showed the existence
of the effects of taxes and dividends on the capital asset pricing. Lucas(1978) worked
with a single-period, pure exchange economy with identical consumers. The marti-

ngale property determined the asset prices and provided a model to be used to



168 M EEIE #AE F£5(1991.12)

test the efficient market hypothesis..

The paper proceeds as follows : In Section II the economy is described. Section
III develops the endogenously determined equilibrium interest rate and characterized
the equilibrium rate of return on assets both in the presence of differential tax
rates and in the noisy information structure. A fundamental valuation partial differen-
tial equation for asset prices will be derived and interpreted in a number of ways.
Furthermore, the stochastic structure of asset prices will be explored in detail. Section
IV analyzes our economy both in the presence of differential tax rates and in. the
incomplete or partial information structure. The equilibrium interest rate and asset
prices will be endogenously determined in terms of the underlying variables. A funda-
mental valuation equation for the asset prices will be derived in the uncertainty-
incomplete information structure and the stochastic structure of asset prices will

also be explored. Section V concludes the paper.

II. Description of the Economy

We consider the problem of individuals who wish to maximize their expected
utility across time in the face of confronting the stochastic behavior of equilibrium
asset prices in a one-good, production, and exchange economy with identical consu-
mers. The single good in this economy is produced in a number of different productive
units. Productivity in each unit fluctuates stochastically through time, so that equilib-
rium asset prices will fluctuate as well. Individuals can invest directly in physical
production by creating their own firms. There are markets for a variety of contingent
claims to amounts of goods. There are securities that are issued and purchased
by individuals and firms to increase their wealth position. Both individuals and firms
are competitive and act as price takers in all markets. Suppose that price and produc-
tion processes are It0 processes. Taking these processes as given, an individual maxi-
mizes his lifetime expected utility. If an endogenously determined environment pro-
cess and the price and production processes taken together form a diffusion process
and if the environment process together with individual’s wealth process constitutes

a sufficient statistic for his optimal dynamic choice of consumption over time, then
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the Markovian stochastic dynamic programming technique can be used to characterize

the individual’s consumption-investment decision.
1. The Probabilistic Structure

Let (Q, B, P) be a complete probability space that is specified and fixed. The
sample space £ has a finite number of elements. Each ® €Q represents a com-
plete description of the exogenous uncertain environment or the possible state of
the world. We assume P(w») >0 for all ® €. Consummer-investors are endowed
with a common probability measure P on measure space (2, B). Thus a community
of consumer-investors agree on which states of nature are possible and further agree
on their probability assessments.

A time horizon T<eo is also specified and fixed, which is a terminal date for all
economic activity under consideration. The filtration n=1{B. : 0<t<T is the collec-
tion of distinguishable events and is specified exogenously. The information structure
is a family of increasing sub-Borel fields of B. Each B. is an algebra of subsets of .
Q with B, CB, for s<t, B, containing only £ and the null set, and Br=B, which
is the set of all subsets.

Securities are traded at time ¢, OStST and the filtration n describes how infor-
mation is revealed to the investors. Taken as primitive in our model are the #-dimen-
sional production stochastic process and the m-dimentional stochastic process for
contingent claims prices. Each component process is strictly positive and adapted
to n. The adaption of the price to n implies that investors know at time ¢ the past
and current price of the security. Specifically, we assume that in Section III individuals
and firms are endowed with a common probability measure on (QQ, B), while in
Section IV they are endowed with partial or incomplete beliefs.”

Let y(t) be an n-dimensional stochastic process that satisfies the system of stochastic

defferential equation

dy(t)=aly, t)dt+o(y, t)dz(®), 6))

where afy, £) is an (# X1) vector valued function 5 a(y, #) is an (# Xm) matrix valued

function ; and 2(#) is an n-dimensional Wiener process.? That is
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a(y, t) - R"XT—R" and o(y, t) - R"XT—>R"™

are given functions, continuous in y and ¢, and satisfy the following conditions :

(i) (The growth condition) There exists a constant %, such that

| aly, ) I’<Ki1+ |y 1% and | o(y, t) 2<KQA+ |y 2.

(i) (The Lipschitz condition) There exsits a constant k. such that
Laly, D—a, t) | {k: | y—y | and |o(y, t)—o(y, )| <k |y—yI.

A solution of the system (1) is an n-dimensional process satisfying the Ito integral

equation

yt)=y(0)+ J‘o a(y(s), s)ds+ J’; o(y(s), s)dz(s) for all t €T as. @)

where y(0) is an n-dimensional vector of the initial position at time 0. Arnold(1974,
Theorem 9.3.1, pp. 152-154) ensures that y in'(2) is a unique solution of the integral
equation (1) and that the solution y(?) is an n-dimensional diffusion process with
drift vector oy, #) and diffusion(covariance) matrix o(y, £} o'(y, t). The drift vector
afy, t) is the vector of expected rate of change(percentage change) of y and the
diffusion matrix is the covariance matrix of rates of change(percentage change) of
¥. Individuals and firms in this economy have the information structure B. The exoge-
nous uncertainty in the economy can be described by the Brownian motion or Wiener
process z(1). Agents in the economy can observe a vector process ¥ whose evolution
over time depends on z. In Section III it is assumed that agents can observe the
Wiener process z directly while in Section IV they cannot have the direct observation
of the process z.

In a probabilistic sense, our economy is governed by the Wiener process z(?). Since
the Wiener process is a homogeneous n-dimensional Markov process with stationary
transition probability, stationary in the sense that the distribution of z(¢) —z(s) depends
only ¢—s, sudden discontinuous changes in the variables in the economy are preclu-
ded?
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2. The Consumption Space

There is a single physical good available for consumption or investment. Formally,

we take the consumption space to be
C=L¥QXT),

the space of equivalence classes of process : C : (QXT)—R such that

EJ‘ | C(s) | ds<co. All values are measured in terms of units of this single commodity.
0
3. Agents

There is a finite number of individuals in the economy indexed by
ie{l, 2,..., I, identical in their endowments and preferences. Each individual is
characterized by a consumpation set C., and endowment vector C €C.. A repre-
sentative individual wishes to maximize a von Neumann-Morgenstern time additive
utility function U : C+—R .

E f ! U(C(s), Q(s), s)ds for all C&Cs, 3)

where E is the conditional expectation operator, conditional on the current state ; C+
is the subspace of C 5 @ denotes the state variables that will be defined shortly ; U(C
(s), Q(s), s) - R+ XR"XT—R is continuous, strictly concave, strictly increasing, twice
differentiable ; and U satisfies the condition | U(C(s), Q(s), s) | <k.. for some con-
stant %: and k. We assume that )0 for all i €{1, 2, .., I.

4. Production Processes
The production opportunities consist of a set of » linear activities or technologies.

The vector of the instantaneous return on the investment in production technologies

follows a system of stochastic differential equations of the form
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do)=a(Q, t)dt+H(Q, t)dz(t), @

where a(Q, ¢) is a bounded n-dimensional vector valued function of @ and ¢, which
is the vector of the expected rates of return on the production activities s € is an
m-dinentibnal vector of state variables which is changing randomly over time and
will be described in Subsection II.5 5 and H(Q, t) is a bounded (1 Xm) matrix valued
function of @ and ¢. The covariance matrix of physical rates of return on the production
processess, HH', is positive definite ; and z(?) is an n-dimensional Wiener process.
The development of the state vector @ thus determines the production opportunities
that will be available to the economy in the future. Equation (4), which is a complete
description of the available production processess, specifies the growth pf an initial
investment when the output of each process is continually reinvested in the same
process. Physical investment takes place continually in time with no transaction costs,

and with limited liability. The productioﬁ market is always in equilibrium.
5. The State Process

The dynamics for the changes in the state variables follow the m-dimensional

vector Itd processes of a system of stochastic differential equations of the form
dQ)=6(Q, t)dt+S(Q, t)dz(t) )

where 0(Q, t) is an m-dimensional vector of the instantaneous expected rates of
change in the state variables : and S(Q, ¢) is an (mX#n) dimensional matrix. The
covariance matrix of instantaneous changes in the state variables, SS’, is nonnegative

definite.
6. The Capital Market

There exits an exchange market for borrowing and lending at the same rate of
interest. The market equilibrium risk-free rate is determined endogenously as part
of the competitive equilibrium of the economy. The capital market is always in equilib-

rium.
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The instantaneous movement of the value of the jth asset is governed by a systém

of the stochastic differential equations of the form

dF=F(B;—§)dt+ Fgdz(t), (6)

where B;F’ is the total expected return on the jth asset, ie., the expected price
change(capital gains) plus the payout received ; & F’ is the payout received that may
be dividends, interest, or the value of stock repurchase. The variance of the rate

of return on asset j is g g;.

7. Taxes

There exist differential tax rates between capital gains income and ordinary income.
Dividends and interest are treated as subject to income tax. In the presence of taxes,
the return on investment must be studied on an after-tax basis. In addition, the
before-tax rate of return may reflect investors’ attitudes toward taxation of the returns -
on assets. Moreover, there are nonlinearities in tax schedules that are essential
to understanding the relation between investors’ behavior in the capital market and

taxation.

ll. The Equilibrium Valuation Model under a Noisy Information
Structure

Consider an individual’s allocation problem in the economy described in Section
II Investors can allocate their wealth into three parts : consumption, the physical
production processess and the contingent claims. It is assumed that in this Section
individuals have knowledge of stochastic information and have homogeneous expecta-
tions about the probability distributions of the physical production processess, the
state variables and the contingent claims. The noisy information structure to be used
in this Section is expressed as a Wiener process. Investors can directly observe

this process, which gives information about the evolution of the state variables over
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time.

1. Budget Equation Dynamics and the Equation of Optimality

There are I consumer-investors with preference structures described in Subsection

I1.3 : namely, the ith investor acts so as to maximize his expected utility that is

equation (3). An individual will allocate his wealth among the »n physical production
processes, the m contingent claims; and the riskless borrowing or lending. Let a;
be the fraction of the wealth invested in the jth production process ; b. be the fraction
invested in the kth contingent claim ; and W is the amount of his wealth. Let y
be ordinary income tax rate and A capital gains tax rate. The individual will choose
a; and b, so as to maximize his lifetifne utility subject to his budget constraints.

We can write the budget equation® for the ith investor as
7 K
dW=(2 & Wa—D1-n+2 bWE—8—n(1-1)
1= =

K
+2. bW (&= A—n)+rW1—y—Cldt
&

MR

-+

3 aW haa1—p+ 3 b W gda—) ™
It is assumed here that there exists a derived utility of wealth function,
JW, @ t), which is twice continuously differentiable in its arguments, strictly concave
and strictly increasing.
The necessary and sufficient optimality conditions for an investor who acts accor-
ding to (3) subject to (7), his budget equation, in choosing his consumption-investment

program, are that for the derived utility of wealth function /, at each point in time,

: K
0=Max(U(C, Q t)+J+]. {Zla,- W(m—r)<1—y)+; bW(B—~&— 11—\

K m
+> b;WSi(l"‘Y)'*‘rW(l—Y)—C}+ZIJQ;9f+
1=1 1=

n

L3 3% aa Whid—+3 b, EPNTRAN |
2Jw‘,,{FZI;a,a,, Weh(1 y)z—}-;zlb,bk W gu(1— AP+ z; ;a,b,, W hg
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pr(1—y)(1— )\') _%' 2£}Jmoks,k

+ i 21 JWQk (leh,'ng)jk(l - Y)

K m
+]_Z; ;1 JWkajngkp’jk(]. - )\) ] ) (8)

where subscripts on the derived utility of wealth function J denote partial derivatives.
The h; is the instantaneous covariance batween the return on the jth and kth physical
production processes and the gi is the covariance between the instantaneous changes
in the jth and kth contingent claim. The p: is the instantaneous coefficient of correla-
tion between the return on the jth physical production process and the changes
in the kth state variable. Equation (8) is Bellman equation.”

To derive a meaningful and tactable general equilibrium model we now make
an assumption of a purely technical nature that makes it possible for us to employ

results from stochastic optimal control theory to this problem.

ASSUMPTION 1 : To maximize the von Neumann-Morgenstern utility function investors
make decisions within a class of admissible feedback controls, V. An admissible feedback
control, v, is o-algebra measurable, defined on [t TIXR™™*' and satisfies the growth
and Lipschitz conditions Furthermore, admissible equilibrium B and r are bounded and
satisfy the growth and Lipschitz conditions. There exists a unique function J and control

9 satisfying the Bellman equation and the stated regularity condition.”

Equation (8) is the valuation model as well as the portfolio selection model for
the investor. Assuming the existence of a unique maximizing control policy, the opti-
mal portfolio policies and decision rules can be determined from (8) and the boundary
conditions. However, this parabolic type of partial differential equation often has
no closed-form solution. In this case the differential equation can be solved numerica-
lly.” Equation (8) will be used to describe and evaluate investors’ optimal control
policies of portfolio decisions as well as to derive the optimal portfolio decision rules

“and normative behavior of investors in the capital markets.
Define all the expressions in the right-hand side of equation (8) except the first

and the second terms as L(#)J, which is said to be differential generator of J or
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the Dynkin operator where C(t) is replaced by an admissible feedback control v(?).

Then equation (8) can be written compactly as
0={1}(’{§1){U(v(t), Q), O+ J+LM)]]
Now define
Bv®), WO, Q0. 0=MplE [ Ueo), Q®, 9 ds)
where v() is an admissible feedback control. Then Bellman equation (8) becomes

0= lv\g)z}nd:U(v(t), Q), t_) +B.+L(t)B]

where L(¢)B is the differential generator of B.

The following lemma provides the feedback optimal control

LEMMA 1: Let J(t, W, Q) be a solution of the dynamic programming equation (the

Bellman equation )

0=Max [LOJ*+ U Q W1+ for (t W, Q €D=(t, IX(0, ) XR,
with boundary conditions

Jo, @ t)=§.t ftTU(O, Q(s), s)ds 5 and XT, W, Q=0

such that J(t, W, Q) is continuously differentiable with respect to t 5 twice continuously
differentiable with respect to W, and Q continuous on the closure of D 5 and satisfies

a polynomial growth condition on D, that is,
136 W, @ | <R+ W, Q1™

where K. and K, are some constants. Then
@) JT, W, Q2B(T, W, Q, v) for any admissible feedback control v and any initial
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position (W, Q) €D ;s and

(i) if v* is an admissible feedback control such that

L+ UG, Q )=Max [LWJ+UG* Q v for all (t W, Q) €D ; then
JW, Q Y=Bw* W, Q. )  for all (W, Q t) €D.

Thus v* is optimal.
PROOF : See Flemming and Rishel(1975, p.159) "Q.ED.

Since consumer-investors can invest their wealth in the physical production proces-
ses and cannot obtain any satisfaction or can produce only disutility from nonnegative
consumption, =0 and C20. The necessary and sufficient optimality conditions for

(8) under these constraints are in matrix notation,

0=U.—J.<0, (92)
Co.=0, (9b)
¢.=Q1—7y) (a—rDWJ.+La—y? HH'a+Q—y)Q— MHG'bIWY,.

+ (1~ 7)HS' Wiwe=<0. (90)
a'$p.=0, : (9d)
®=(1—AP—8—rHWL+8(1—y) Wi+ {(1—-y)(A—NGHa

+(1—-2)7 GG'b) Wwt(1—A) GSWIn=0, (9e)

where double subscripts on J denote second partial derivatives, Jwe is an m-dimensio-
nal vector whose 7th element is Jwo, and 1 is a unit vector.

The system can be solved for the optimal quantities C, 4, and b in terms of W,
Q and ¢ as a function of the partial derivatives of J, the derived utility of wealth
function. Substituting the solution into Bellman equation (8), we have a partial differe-
ntial equation with unknown J. With the boundary condition, we obtain a solution
for J. Plugging the solution of J back into the system of the simultaneous equations,
we have the solution for C* a* and b* as functions of only £ W, and @, which
are the current wealth and the current state variables at time f. Thus the optimal

investment in production processes, optimal consumption and portfolio are derived,
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together with the optimal portfolio decision rules.

2. A General Equilibrium Valuation Model

The analysis and conclusion of the preceding Subsection state that given a, B
and 7, y and A, with J explicitly determined, the optimality conditions for the problem
with contingent claims and borrowing and lending can be combined with the market
clearing conditions to give the equilibrium interest rate and expected rates of return
on contingent claims. Equilibrium also determines the optimal physical production
plan and the optimal consumption plan.

In equilibrium in this homogeneous economy, the interest rate and the expected
rates of return on the contingent claims must adjust until all wealth is invested
in the physical production processes. In aggregate, the net supply of contingent claims

and riskless lending must be zero. Formally, we have the following definition.

DEFINITION : An equilibrium ts characterized by the process having the specification
(6) and by a set of stochastic processes (r, B 5 a, C) satisfying (9) and the market clearing
conditions al=I1(capital market clearing) and b=0 (claims market clearing).

The endogenous determination of the equilibrium interest rate and its properties
are of great interest. To see the characteristics of the riskless interest rate, solve
(9d) for the equilibrium interest rate using the market clearing conditions. Then

we can write the general equilibrium rate of interest of the riskless asset as

W, Q, t)=a*a+(1—y)a¥HH'a*W J-‘?ﬁ‘;’L-l-a""HS’ ]{%LQ—

w

=ava—(-p(f) (a5 (e (o GLA  qag)

where var(W) stands for the variance of changes in optimally invested wealth and

cov(W, Q) represents the covariance of changes in optimally invested wealth with
changes in the state variable @;. Here * denotes the optimal value.

Suppose that this world is one with no risk at all. Then under this condition of

perfect certainty all variance and covariance terms vanish. Consequently r=a*q,
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that is, the riskless rate of interest is identically equal to the market rate of return
on the market(aggregate) physical production process or the rate of return on any
physical production process due to the fact that the rate of return on a physical
production process is equal to that on any other physical production process in the
world of certainty. It is interesting to notice that the presence of taxes does not
affect the equilibrium interest rate. The interest rate in the presence of taxes is
identically equal to the rate that would obtain in the absence of taxes.

With perfect foresight, individuals have perfect knowledge of their wealth position
at any time in their life span, and are willing to belong to a particular clientele
with the same tax bracket in order to reduce the effective tax rate in such a way
that they may ignore the presence of taxes and act as if the taxes have no impact
on their investment activities. If investors can form a clientele favorable to them
such that the effective tax rate is the same for each investor, then the presence
of taxes clearly has no effect on the behavior of the investors toward their investment
activities.

Equation (10) states that the equilibrium interest rate may be either less or greater -
than a*a, the market rate of return on the physical production process. Since the
derived utility of wealth function is strictly concave and strictly increasing in W
and the variance of changes in optimally invested wealth is allways nonnegative,
the second term in (10) is nonnegative. The third term reflects the investor's demand
for the physical production processes to hedge against unfavorable shifts in investment
opportunity. If the ex post opportunity set is less favorable than anticipated, the
investor will expect to be compensated by a higher level of wealth through the positive
correlation of the returns. Similarly, if ex post returns are lower, he will expect
a more favorable investment enviornment. This fact reflects an attempt to minimize
the unanticipated variability in consumption over time in order to achieve an interte-
mporal smooth pattern of consumption. An individual investing only in locally riskless
lending would be unprotected against unfavorable shifts in the stochastic investment
opportunity set or the state variables. Then the equilibrium interest rate is less
than the market rate of return on the physical production processes.

The above argument leads to the fact that the presence of taxes should not have
any impact on the covariance of changes in optimally invested wealth with changes

in the state variables @, because the tax rates reduce nonlinearly if the rate of return
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decreases. The .unfavorable shifts in the stochastic investmient opportunity set is
perfectly positively correlated with the tax rates. Thus taxes should not affect the
covariance term. The tax term, however, is in the second term in (10). It is natural
that taxes affect the changes in the investor’s wealth. Since the second term is
non negative and y €[0, 1], the amount of this term is less than that of the term
which would have achieved with no taxes.

Thus the equilibrium interest rate in the presence of differential taxes is greater
than the rate derived in the absence of taxes. Investors, investing in riskless lending,
want to be compensated for paying taxes on their interest earnings. It is desirable
to discuss in some detail some properties of the general equilibrium riskless rate
of interest. By Itd’s lemma®, J, will satisfy the stochastic differential equation to
JAW, @ t). It is assumed that the second partial derivatives on J. and J; are continuous
and differentiable with respect to W. Then we have the following theorem for the

general equilibriurh interest rate.

THEOREM 1 : (i) In equilibrium the interest rate is equal to the inverse of (1-y) times
the negative of the expectation of the rate of change in the derived marginal utility of

wealth with respect to wealth, i.e.,

W, Q p=—4= Y’J:E[dlw] | 11

where E denotes the expectation operator and d is the symbol for the derivative.

(11) The equilibrium interest vate is equal to the expected wmarket rate of return on
the physical pro;iuction process plus the inverse of (1-y) multiplied by the covarince of
the rate of return on wealth with the vate of change in the marginal derived utility

of wealth function divided by wealth times the marginal utility of wealth, i.e.

W, Q H)=a*a+1~y)" %Jﬂ)_ (12)

PROOF : (i) Use Ito’s lemma on J,.=J.(W, @, ) to get the stochastic differential equa-

tion of the form

(1= 7)"'dIw= 161 = y)Jwwsvar(W)+ v(1 — 1)~ ZZImechov(Qj, Q)
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+i11wwq,-cov<w, Q+a-y)" J_ionje,ﬂm
+Jwl@a*aW—(1—y)'C) dt+[ - ] dz, (13)

where [ - ] is the collection of the terms containing dz. When we take the expectation
on (1—y)™" dJ., the terms containing dz become zero. Dividing dJ. by J. yields the
expected rate of change in the derived marginal utility of wealth. Next we differentiate

(8) with respect to W and use (9¢) and the market clearing conditions to obtain

w1 —Jww~ cvar(W) 2 —Jwoiy - cov(W,Q)
r=a*a—1—v)!{ Jw][W ) jg.l[ Jwg"ﬂ[ W )

j=1 k=1

= — (LA =] ywvarW + (1 —7)
A vt @ aW == 01/,
=—(a—-y) Ed/]), (14)

which is the desired result. This completes the proof of part (i).
(ii) By Itd6’s lemma, the stochastic part of dJ., is

[T HW(L —7) +J'yoS1dz(t)

and the stochastic part of dW is a™HW(1 —v). Thus the covariance of the rate of

return on wealth with the rate of change in the marginal utility of wealth is

cov(dW, djw) __1
Wiw Wl

U@ HWA =) +J,,S) (a*HW(1—7))’

Dividing both sides by(1—vy) yields

A—y)'cov(dW, dlw) _ __(/y_ —Jww  , var
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» —Jwg  covW, Q) '
+ B, a5

This equation is exactly the same as the second part of (10). Substituting this into
(10), we have that ‘

r=a*q+(1—y)" covggvvJVw, djw) ,

which is the desired result. This completes the proof of the second part of the Theo-
rem. Q.ED.

The Theorem states that the interest rate in the presence of taxes is determined
in eﬁuilibrium by adjusting the expected derived marginal utility of wealth through
the inverse of one minus the income tax rate, or by adjusting the covariance of
dW with J,, through the inverse of one minus the income tax rate. When investors
hedge against the risk of unfavorable shifts in production technologies, the covariance
of dW with dJ,, will become negative. The presence of taxes will aggravate the situa-
tion, and hence will in turn hurt the smooth péttem of the standard of living. Thus,
investors require a higher return for the riskless lending by dividing (1—v) into
the covariance between dW and dJ,. The riskless rate of interest is a function of
the returns on the physical production processes and the covariance of the rate
of return on production technologies and the rate of change in the marginal utility
of wealth, which is adjusted by the inverse of one minus income tax rate. This Theo-
rem clearly shows that the riskless rate is determined in the capital market by the
interactions of the dynamics of assets prices and the utility function.

We now turn to the equilibrium expected return on contingent claims. The equilib-

rium return is characterized by the following theorem.

THEOREM 2 © Equilibrium determines the equilibrium expected return on any contingent

claim as follows :

B—DF=EF+ (0, 0gy"" Gan) Fr, Fin,~, Faw ), (16)
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¢w=(1—y)2[-_—‘}::ﬂ-] (varW) +(1—) £ El*}—“;ﬁ—l (cov(W, Q)),

b =1—7)( —izw ) (cov(W, Q,»)+§il [:J:&] (cov(W, Q, QJJ.

PROOF : Using the market clearing conditions and substituting a* and 7 into (%),

we obtain
Bi=s,-(1—}—:—;: )+a*'a1+WJleW[{(1—y)a*'HH'a*}1—(1—y)GH'a*J
+—Jl— (a*HS Jwe) 1— GS'Twa). an

To link (17) with F and eliminate G, we use It6’s lemma for F(W,Q,¢), which yields -

the stochastic terms as follows -
dF'= (Fw(1—y)a*HWdz(t)+ FoSdz(t)) +1{ - ldt,

where { - } denotes the collection of the terms containing dt. Recalling from (6)
that Gdz is the stochastic term of the system of the stochastic differential equations
which is the instantaneous evolution of the state variables, we can equate FGdz

to the bracketed term of the above equation and obtain
FG=F«(1—y)a*HW+FS. (18)

Substituting (18) into (17) and rearranging, we can write the equilibrium expected
return on the 7th contingent claim as

BF=rF+ (E‘%)&"‘Fw (« _ﬁw) A=) var(W)+ (—_-%m-)(l—-y) cov(W, Q)]
=1 W

+E Fo () A—yoovW, Q+E (—Ieov@, ), (19
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which is the desired result. This completes the proof of the Theorem.  Q.E.D.

Thé Theorem states that the equilibrium expected return for any contingent claim
can be expressed as the riskless return plus the tax-adjusted payout plus a linear
combination of the first partials of the tax-adjusted asset price with respect to W
and F. Equation (16) or (19) shows that the equilibrium return on a contingent claim
is linearly related to the variance-covariance between W and Q. Note that the absolute
risk aversion of the derived utility of wealth function affects the determination of
the equilibrium return on the claim. Netice also that all the factors affecting the
return must be adjusted by the income tax rate. Furthermore the payout is adjusted
by both the income and capital gains tax rates.

Let us examine equation (16) in some more detail. From (10) follows that ¢=(Q1—7)
(@*a—y)W, which is the tax-adjusted expected excess return on optimally invested
wealth over the riskless return. The tax-adjusted expected excess returns are, in
turn, adjusted by the marginal values of the contingent claim with respect to the
wea_lth and each of the state variables. The total payout is taxed by the rate & There-
fore, the total return of the contingent claim is a function of the tax-adjusted total
payout, tax-adjusted excess return, the marginal values with respect to wealth and

state variables, and tax rates.

3. The Fundamental Valuation Equation

In the preceding Subsection, we have obtained the equilibrium expected return
for the contingent claim, which provides great insights into the process of determina-
tion ‘of the expected return. On the other hand, the solution for price function F
is important, whether it is of a closed-form type or not. The following theorem gives

the explicit price functions for the contingent claims.

THEOREM 3 : The price of any contingent claim is given by the fundamental partial

differential equation of the form :

%(1 ,—Y)Zvar(W)Fww+(1—Y)jZ=ZICOV(W, Q)Fwat 12 Zz cov(Q;, Q) Faa
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— Jww

+ (r(W,QHW— C*W,Q,t)) Fw+y{(1—vX Tw ) var(W)

+ B covW, Q))Fw

m e _wa '
+j§1 6—(1—v ( Tw Ycov(W, Q)

— ¥ (%% 0v(@Q, Q))Fu+F,
k=i JW

—r(W,QOF(W,Q.t)
+3W,QHFW,QH—(y— M1~ "8W,Q=0. 20)

PROOF : By Ito’s lemma, the drift term of F(W,Q,T) is given by
BF = 8F + 15(1—y)var(W)Fw + (1—7) §":l cov(W,Q)Fwa
-
T4 jinZl ;El cov(Q, QI Foa

+(@—y)a*aW—C)Fw

+ 20Fa+F. @1
i=
Combining (21) and (19) yields (20). Q.ED.

Note in (20) that taxes are not involved in the terms regarding the state variables.
Total payout is subject to the tax rate &
Recall that y is given by

r=avo—(1—y(—ey (B0 )~ 3 (—hey (o Q)

Substituting » into (20) and using the definition of ¢w and ¢, We can rewrite (20)

as

%1~y var(WFw+ (1-7) Ecov(W, QFwot% & £ cov(@, Q) Foa
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+ Ea=~aw—c*JFw+,'*“zl 0Fg+F.—1F+8F—(y—) (1—1)"'5
5
={1—y(Q—7y)) owFw+ doFe. (22)

Equation (20) is of great importance due to the fact that it gives the equilibrium
prices for contingent claims whose closed form solution will be given shortly, but
equation (22) provides an easy interpretation for Theorem 3. The left-hand side
of (22) gives the tax-adjusted excess expected return on the security above the risk-
free return, while the right-hand side gives the tax-adjusted risk premium that the
security must have in equilibrium. Both the excess return and risk premium must
be adjusted by tax rates. Note that in (22) ¢w, which is already tax-adjusted, receives
again the tax adjustment.

To solve the fundamental partial differential equation for the price of any contingent

claim, we need boundary conditions, which can be written as

FIW(D), Q(T), TI=T[W), QD]  for W(T), QT) €A ; and

FIW(), Q(t), t]=0[W(), Qk), t1 for W(), Q) E2A. (23)

The boundary conditions above may be interpreted as follows : T is the maturity
date of the contingent claim. Therefore, F is defined on [£ TIXA, where A C(0,
«0)XR™ is an open set and QA is its boundary. Hence F belongs to a well-defined
time dimension or domain until the maturity date of the contingent claim. At the
time of the maturity, the asset has the terminal value. In the mean time, if F happens
to reach the boundary of the domain at time before T, ie. t<T, then F is to pass
through the boundary of the domain. Hence, the confingent claim can no longer
stay in the capital market. As a result, the contract is terminated. Thus, t is the
first passage time or the first hitting time that F leaves A if such a time exists,
and t=T otherwise. dA is the set of all accessible boundary points. If F' hits gA,
then the contingent claim is liquidated and its value will be ®.

Now define System I as follows -

dW(t)—La*aW(1—y)— C*1dt+a*HW(1 —y)dz(t) ;
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dQ®)=0(Q, T)+S(Q, t)dz(t). (29

Using System I and boundary conditions, we can solve (20) for the price of the

contingent claim. The next theorem shows this.

THEOREM 4 © The general equilibrium fundamental valuation partial differential equa-
tion for the price of the contingent claim, with the boundary conditions defined above,
has a unique solution. The equilibrium price for the contingent claim that is the unique

solution to (20) is given by
T
FW, Q A v, t, TH=E[TW(D),QT)) - [exp{— f BOV@), Qw, wdulliE=T)
+ W), Q) o) - Lexp—{— f BW(w), Q), widul 1<T)
AT s
+ f S(W(s), QE), ) - [exp—| f BOVG), Q) wdullds),  @25)

where I( - ) is an indicator function, and < is the first hitting (passage) time to gA,
and the dot ( ) represents multiplication. Expectation is taken with respect to System
L

PROOF : By Ito’s lemma, equation (20) can be expressed as LF+F,+8F=pF. Use
Theorem 5.2 of Friedman (1975, vol. 1, p.147). Q.E.D.

The Theorem provides significant implications for the investors’ optimal behavior
of the contingent claim. The price of any contingent claim is determined by the
three important factors : First, if the underlying variables do not leave the defined
dimensional space before the maturity date, a payment of Y is received at the maturity
date, and the contingent claim is fully compensated. Second, if the variables leave
the space before the maturity date, @ will be paid at that time’. And third, the
holder of the contingent claim will be compensated for his accumulated payout recei-
ved. Furthermore, all the future values are discounted at the discount rate B( * ).

Note that equation (25) does not contain an explicit tax term in it. Taxes are

incorporated in the expectations, as shown in System I, and in the definition of
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B, as shown in (19). The presence of taxes has an impact on the price of the contingent
claim through the expectation and the rate of return on the claim. Therefore, F
is a function of W, Q, v, A, ¢ and T.

The Theorem provides significént insights into the determination processes of
the contingent claim prices and the wealth-maximizing behavior of investors. Howe-
ver, there are two unknown variables F and B in it. Unless the equilibrium expected
rate of return of that particular contingent claim is known in advance, we do not

have an explicit solution. To avoid this difficulty, consider System II
dW(t)=[a*aW(1—y)— dw— C*Idt+a*HW(1 —y)dz(t) ;
dQ®)=10Q t)— (b O - . . , den)Jdt+S(Q, t)dz(t). (26)
Then we have the following theorem.

THEOREM 5 : The unique solution to (20) is the equilibrium price for any contingent

claim that is also written as
T
FW, Q A v, t, D=E[TW(T), Q(T)) - [exp{— f tr(W(u), Q(), wdu}ll Iz=T)

+ W), Q) o - Lexpi— f W), Q), wdul] Ie<T)

o/

T s
+[  8(W(s), QGs), s) * Lexp{— f (W), Q), wdutlds], (27)
where E denotes expectation with respect to System II.

PROOF : By Theorem 5.2 of Friedman(1975, Vol.1, p.147), we obtain the above
result. QED.

Though equation (27) has no explicit term about taxes, the expectation and the
riskless rate of return determined endogenously by equation (10) reflect the taxes.
Equation (27) states that the equilibrium price of a claim is given by its expected

discounted value adjusted by taxes through the expectation that is taken with respect



General Equilibrium Model of Asset Pricing 189

to a risk- and tax-adjusted process for the optimally invested wealth and state variab-

les.

V. A General Equilibrium Valuation Model
Under Incomplete Information

In Section 3, we have developed a general equilibrium model of asset prices with
taxes assuming perfect knowledge of the economy, or the direct observation of the
process that provides the information about the dynamics of the state of nature.
In this Section we will relax this assumption. We assume that the underlying state
process is unobservable, but that there exists a process which is observable and
provides partial information about the state of nature. Formally, we have the following

assumption -

ASSUMPTION 2 : Let (¢ 5 Q) be a partially observable process of state variables where

e is unobservable and Q is observable. The joint process is Gaussian -
de(t)=n(t)e()dt +A(t)dz(t) 3 (28
aQ®)=6(t)e()dt + S(t)dz(t) (29)

where zi(t) and z(t) are the n-dimensional independent Wiener processes s n(t) is an m- -
dimensional vector valued function s and A(t) is an (m Xn) dimensional matrix. The
covariance matrix of instantaneous changes in the unobservable part of the state variables,

AA’, is nonnegative definite.

Since investors have only partial information about the state variables, they need
conditional distribution to infer knowledge of the evolution of the state variables
froin the observable component. Assume that the initial conditional distribution is
N(w, of). Then the conditional distribution of the unobservable part of the state
variables (e(f) | Q(¢)) is normally distributed with N(u®) ; w(#)), for which p() and
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y(t) are determined by solving
du(t)=n()u)dt +y®O')SS) (dQM) —Otut)dt) ;
pO=p
vt =ntwt)+w®n' )+ AA — w0 (t)(SS) 0w’

y(0)=a3, (30)

where w(t) is the derivative of y(¢) with respect to time £. Define dv(t)=dQ(t)—6(t)u(t)
dt. Then v(t) is an innovation process with instantaneous variance V=3SS'. Since
all‘values are known together with the initial conditional distribution, y(#) is determi-

nistic. Therefore, the conditional density is
§e® | Qls) - 0<s<t)={(e(t) | n(t)). (3D

From (4) and (6), the physical production processes and the contingent claim processes

can be written as
do=a(e(t), t)dt+H(et), t)dz(t) ; (32)
dF=F(@,— §)dt + Fgdv(t) — Fndzi(t). (33
Since incomplete information structure determines the physical production proces-
ses and the contingent claim processes, we can obtain an intertemporal general equili-
brium model of asset pricing in the structure of partial information about the state
variables.

1. A General Equilibrium Asset Pricing Model

Under the incomplete in formation structure, wealth dynamics as the time ¢ is

suppressed for notational simplicity, can be expressed as



General Equilibrium Model of Asset Pricing 191

n k k
aW=[ ZaW@ 01—+ EBWE—6- 01— D+E bWE— 111
= = = .
n k
+1WA—y)— Cldt+ T aWhdz®1—1) + 2 bWgdv)1—1)
j= =
+§:lb,-wmdzl(t)(1—x). (34)
p

The investor observes the returns, do(?), on the physical production processes
and uses dd(t) as an inference process through the process dQ(t). Thus d() is a
subcomponent of Q). And then he will allocate his wealth in order to maximize

his lifetime utility of consumption

T
Max QE('E) f t U(C(s), s)ds (35)

subject to his bugdet equation (34).
The Bellman equation under the incomplete information structure or the indirect

observation of the state variables becomes
0=PC/LZB( {UCH+]+wla@—rDA—y)W+bBE—6—rDA— )W+ b'8(1—y)W
+r(1—y)W—CJ) +Jnu+J,00my +yn' +AA — y6'(SS") '0y’)

+¥elw { B (@HA=v)+bn(1=2)) (Hal—v)+nb(1—1)] +bgVg'b}W*

+ 1] Ow0'(SS)T'V(SS") 0y’ + Ju (w0 (SS") 'Vg'b(1—A)) W}, (36)
where J, is a (I1Xn) dimensional vector 5 J, is an (#Xn) dimensional matrix ; J,.
is an (nXn) dimensional matrix ; J., is a (1Xn) dimensional vector ; [] is direct
multiplication symbol for matrices followed by addition of all the components ; and
V=8S" is the covariance matrix of dv. Hatted variables are conditional expectations.

The conditional expectations can be obtained by the following lemma.

LEMMA 2 : Suppose that the signal process” {X(t)} is the unique strong solution of

the stochastic differential equation
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dX()=NX()+oXt)dz(t), 0<t<T

with initial condition Xo Suppose that M is a twice continuously differentiable function
on R™ so that

MX(©O)=M(Xs)+ f ;LM<X(u)>du+ j 0 VM * o(X(u)da(u)

The observation process y(t) will be with K(t)=h (X(t)), a bounded function, and sup-

Dpose
T

(7, W)= f wdy,  1Si<m, 1<j<n.
For £€ L qm, Write ®O=EHX®) | v,
Then

TOM) =L+ [ M) AM

+ f 0{H(U)(VM,cr,p) + " (y(W)AL(w)(Mh) — )M (w)(E) P dv(u).

PROOF : See Theorem 18.12 of Elliot (1982, p.283). Q.E.D.

The necessary and sufficient optimally conditions for the Bellman equation (33) are

given by
0.=U.—J.<0 (37a)
Co.=0 (37b)

$.=JwW(G—r1)(1—y)+ JwWEHH'a(1— y)*+EHn'b1—y)1—VI<0 (37¢)

a'p.=0 (37d)
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¢=JwWL(B—8—rDA—A)+8(1—7)]+JwW{ gVg'b+E{nn'b(1—A)
+nHa(1— Q-+ JwWLgV(SS) ey ](1—1)=0, (37e)

where E represents expectation, which is taken with respect to u(?).

This system can be solved for C, a, and b in terms of W, u c, and ¢, and partials
of J. Substituting back into the Bellman equation, we obtain a partial differential
equation for J Plugging J back into the system, we can obtain the desired values.

Solving (37d) for the equilibrium interest rate, we have

Wlww

w

r=a*g+ a*+HHa*(1—7v). (38)

Since the solution to the Bellman equation (36) is a function of u and v, the equilibrium

interest rate is a function of p and y. We can rewrite the equilibriun rate as

r=ave—(1—y) ) E,, (YWD 1 10) (9

Equation (39) is different from (10) in two respects. First, it does not contain the
covariance of the change in optimally invested wealth with changes in the state variab-
les. The reason is that the information structure consists of independence of z(¢)
and z;(). Put another way, investors have only partial information of the evolution
of the state variables. Second, from the same reason (39) has the variance term
with expectation, conditional on the information g(?), inferred from p(?). Therefore,
we present the following theorem without proof (which is similar to that for Theorem
1).

THEOREM 6 : In the rational expectations equilibrium the equilibrium interest rate
1s equal to the one minus income tax rate times the negative of the conditional expectation
of the rate of change of marginal utility with respect to wealth, i.e.,

=-—{a= 'Y)’%gw(t)[d,]w] (40)

where E., denotes the conditional expectation, conditional on u(t), ie,
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EL - 1e®) 5 pvl.

We now turn to the equilibrium expected return on contingent claims. The following

theorem gives the equilibrium expected return in terms of the underlying variables.

THEOREM 7 . The expected return for any contingent claim in the rational expectations

equilibrium 1is given by
(B~ DF=( —E—;‘ 6P+ (1—y)°F, E(_}—:W)hg (var(W | &) 3 p))
+A-N) DF (3 ) covlyy wl ) u) 3 wo)). @1)
=1 M k=1 Jw

PROOF : By employing Itd’ s lemma to F(W, y, y, £) we can express g and n explicitly.
Plugging the results into (34¢) yields (41). Q.E.D.

The main difference of (41) from (16) is that equation (41) does not contain the
covariance terms of changes in optimally invested wealth with changes in the state
variables due to the information structure. The inference of knowledge about the
state variables from the partial information and the market clearing condition =0
for all j dictate that wealth diffuses independently of the innovation process dv(¥),
because dv(?) is independent of dzi(#) through the independence between dzi(#) and
dz(t).

Equation (16) has both the variance of optimally invested wealth and the covariance
of wealth with changes in the state variables without expectation, while the variance
and the covariance in (41) are conditional expected ones. This discussion leads to
the following theorem about the value of information under situations of incomplete

information in the continuous market.

THEOREM 8 . The ex post value of information under the situation of incomplete infor-

mation in the continuous market with taxes is given by

¥Y=Fw(1—Y) ,~=§:1 (;JWML) (cov(W, Q)] +(1—y)j=§1 | —-Jwaw] (cov(W, Q).
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PROOF : Obvious by comparing (16) to (41). QE.D.

Equation (42) says that the value or cost of information to translate the incomplete
to the noisy information is a function of five factors : the absolute risk aversion
(—Jww/Jw) with respect to wealth ; the hedging (— Jwa/Jw) against unfavorable shifts
in the stochastic investment opportunity set ; the tax-adjusted covariance of optimally
invested wealth with the state variables ; the marginal value of the claim with respect
to wealth ; and the marginal value of the claim with respect to the state variables.
Thus the marginal values of the claim and the covariance between wealth and state

variables are important factors which determine the value of information.

2. A Valuation Equation for a Contingent Claim

The development of the preceding Subsection allows us to obtain a partial differen-

tial equation which will serve as a general equilibrium fundamental valuation equation -

for contingent claims. The equilibrium prices for contingent claims under incomplete

information is specified in the following theorem.

THEOREM 9 : The price of any contingent claim satisfies the partial differential equation
of the form

1=y E (var(W | &) s pt))Fom+(1-7) ,-521 (cov(W, w | &) 5 p(®))Fws

+% % E (cov(, p | o®) 3 pOVFaut GW—CIFw+ £ (Z

1)t 3 (T _ . _ 1-y >R W
A= 2 5 deov, el e® 3 W) +F—rF+@—) B SF+ ZFRY, (43

where

r=a*a—(1—v)( _-J‘;VW ) ;];;t) VarM/E“(’t) E1((9))

y=ny+yr +AA —y8(SS) 0y
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PROOF : Itd’ s lemma employed for F(W, u, v ,#) gives the drift term of dF. Equate
the resulting term to the drift term of dF given by (33). Taking the conditional
expectation for the resulting equation, conditional on u(?) and substituting into (41)
we obtain the desired result. Q.E.D.

The important difference between (20) and (43) is that the fundamental valuation
equation (20) -contains the term y[(1—y)( “]ww/Jw)var(W)+J_;2n:1 (— Jwailw) cov(W,Q)Fw
which cannot be found in (43), while the fundamental valuation partial differential
equation (43) contains the term F,(1lmy+yn' +AA’—y0(SS")*0y’], which does not
belong to (20). In addition, equation (43) is formed by taking the conditional expecta-
tions, conditional on p(t). The term in question in (20) is adjusted by income tax
rates due to the fact that the variance is the variance of optimally invested wealth
and the covariances are those of wealth with the state variables. The term in (40),
however, does not have the tax factors in it. Both terms represent risk premium.
The premium in (20) comes from the uncertainty about both the fluctuations of
optimally invested wealth and the comovement of wealth with changes in the state
variables. On the other hand, the risk premium under the situations of incomplete
information is derived from the drift terms of both the observable and unobservable
processes of the state variables, the variance of the both processes, and the given
value y(?). This quantity is needed as the adjustment factor for the uncertainty caused
by the conditional expectations taken in (43).

As in Section 3, we impose boundary conditions as follows -
FW®), w(D, w(T), D=TW(D), w(D), w(T))  for W(T), w(T), w(D) €A ;
FW@), u@), y(@), D=EW@), u@), v@®, ©)  for (W), p@), v(x)) €oA. 44)

To obtain the solution to (43) , we define the following two systems of stochastic

differential equations. The System III is
dW(t)=[a*aW(1—v)—Cldt+(1—y)a* HWdz(t) ;

dut)=nudt+y0’(SS") " *dz(t) ;
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dy®)=[ny+wyn +AA —y0'(SS) 0y’ 1dt, - (45)
The System IV is
dW(t)=LA-y)rW—ClatX[1—yJla*HWdz(t) ;

ﬁ%dtwe'(ss')% dz@t) 5

du(®)=[np+V, ]

dy(t)=[my+yn'+AA’ —y0(SS) 0y’ 1dt, (46)

where

=t (1—) Jvvav: o (var(W | Ok m(t))

Using the boundary conditions and System I, we can obtain the solution to (43),

stand by the following theorem.
THEOREM 10 : The price of a contingent claim, which is the unique solution to the
fundamental valuation partial differential equation (43) with boundary conditions (44),
is given by
FW, b, v, A, v, t, D=
T
E[TW(T), w(T), w(T)) - exp{—ﬁ BW(w), p), y(u), wdu} It—=2T)
+EW®), u@), y@), 1) - exp{— f tB(W(u), p(w), y(w), wdu} Ic<T)
AT s
7 8W©), 1o, o), 9+ expl [ POV, ), v, wdulds] @)

where E denotes expectation with respect to System 1Il.

PROOF : Use Theorem 5.2 of Friedman(1975, vol.1, p.147) to equation (43)
Q.ED.
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In order to express the price of a contingent claim as a function of the known

interest rate instead of the unknown B, we can use System IV and obtain the following

theorem.

THEOREM 11 : The unique solution to (40) with boundary condition (41) when the

risk-free rate is used is also given by
FW, b, w, A, v, t, D=
T
E[TW(T), w(T), w(T)) - exp{— f tr(W(u), u(u), w(u), wdu} Iz2T)
+T(W), pk), w@), ©) - exp{— J: B(W(u), p(w), y(u), uydu} Ix<T)
AT S
7 8009, 1, weo), 9 - expl [V, ) v, walds]  @9)

where we take the expectations with respect to System V.

PROOF : Use Theorem 5.2 of Friedman(1975, vol.1, p.147) to equation (44).
QE.D.

Equations (47) and (48) reflect u and v instead of Q in equations (23) and (24).
Otherwise, they are the same. These equations ensure that both the fundamental
valuation equations have unique solutions if we can adequately and appropriately
specify the utility function, the boundary conditions, and the state variables. No expli-
cit terms about taxes can be found in both (47) and (48). Taxes are implicitly reflected
in the expectation and the definition of § and r.

The fundamental valuation partial differential equation (43) can give more useful
information about the process of determining the prices for the contingent claims.
The solution to (43) can be interpreted in terms of marginal-utility-weighted expected
values.

Let

= (I Twary o Jwom
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and
Z _ [ a*HW(1—vy) ]
S

Assume that there exist y<0 and Y>0 such that Eue: exp(Y | M'(S)Z(S) | 2<y for
all s, t<s<T. Then we have the following theorem.

THEOREM 12 : The price of any contingent claim that is a unique solution to the

Sfundamental valuation equation (21) , is given by

— Jw(W(D), Q(D), T)
FW, Q A v, t, T)=_E (TW(T), QD) - ( T WO, Q). O I(x2T)

+OWE, Qo) v (R D) 1 1)

AT
[ swe, a9 PRADD ) 4, w9

where E represents expectation with respect to System I
PROOF : Recall from (13) that
=300 TmvarW)+ 4 T 2 Joaacov@, Q)+A—Y) £ Jmwacov(W, Q)
+2 Jna®+ Jwt+ Jaw(@*aW(1 —v)— C)Jdt + (1 — y)Jwwa* HWdz(t) + J'weSdz(t)
= (LJw+Jw)dt+ LA —y)Jwwa* HW + J'woS1dz(t).
By Itd’s lemma,

i::%) : 8((3) 5’) =exp(log Jw(W(s), Qs), s)—log JuW(D), Q@), 1))

s
=exp( J- t (L log Jw(u)+MEL) du-+ J (—M"D)dz(u))

Now
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L log Jw—(J )Lw— 16(1—y)var(WY(—— ]ww Y= (1—7)2.cov(W, Q) JJWQL)( J{Nww)

Y Yeov@Q Q) (T ()
1
=G =M TS M.
From Theorem 1, we know that
&) Wwtw=—r1
JW w Wt

Thus we have that

Jw(W(s), Q(s), s)
Jw(W(t), Q@t), t)

S S 1 S
= (exp(— f r(W(u), Q(u), u)du) - (exp( f t(—M'Z)dz(u —5 f t | MY | %du).  (50)

From the Girsanov Theorem proved by Gihman and Skorlhod (1979, vol. 1II, pp.
250—251) it follows that equation (24) is the same as (50). QE.D.

Equation (50) provides another insight into the pricing of contingent claims. It
states that the price of any contingent claim is equal to the expectation of the product
of its tax-adjusted random amount, a time-discount factor, and a risk adjustment.
The time-discount factor reflects the accumulated effects of locally anticipated percen-
tage changes in the marginal utility of wealth. The risk-adjustment factor represents
the accumulated effects of locally unanticipated percentage changes in the marginal
utility of wealth. Both time and risk factors are incorporated in the model for the
prices of contingent claims to be correctly determined in the continuous market.

If we employ the same procedures to the situations of incomplete information,
we have the following theorem determining the price of any contingent claims. To
do this, assume that there exist y>0 and ¥'>0 such that Ew,[expy | Y1) < ¥

where

2=Mz *r 1oy _hVL ’ n-1 Ih’L
| Y| (Jw yYa*HH’a*W,+ Tw vo'(SS) ! By Tw



General Equilibrium Model of Asset Pricing 201

Then we have the following theorem.

THEOREM 13 © The price of any contingent claim, which is the solution to the partial
differential equation (43) derived under the situation of partial information(incomplete

information) is given by
FW, u, v, A, v, t, T)

=E(TOWCT), w(D), w(m) (YRR VEDD) 162)

+HEWE), p0), v) (PR DD 1)

Jw(W(s), u(s), w(s), s)
Jw(W(p), pc), y@t), t)

AT
+ f BV, W), W), 9 ) ds] 1)

where the expectation is taken with respect to system Ill.

PROOF : Follow the same procedure applied to (40) as the proof of Theorem 12.
QED.

As noted previously, the tax effects are implicitly reflected in (50) and (51). The
main difference between (50) and (51) is that equation (50) is a direct function of
the state variables Q while equation (51) is a function of p(t) and y(t) which reveal
the information of the state variables. This arises due to the fact that the underlying
state variables are unobservable under the incomplete information structure but that
there exists an obsrevable instrument that reveals partial information about the state
variables, thus enabling investors to infer about the states of nature from the partial
information revealed. The conditional process of the state variables, conditional on

this instrument, provides the information about the state variables that are updated

continuously.
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V. Conclusion

In this paper we have developed a general equilibrium model of asset pricing
with taxes under the situation of incomplete or partial knowledge of state variables
as well as in the presence of knowledge of state variables. We have derived the
equation for the equilibrium riskless return which is endogenously determined in
the economy. This gives more insights into the process of determining interest rates
than the Fisher model

The main results of the paper are the fundamental valuation partial differential
equations for asset prices in the presence of differential tax rates. The solutions
to these partial differential equations determine the general equilibrium asset prices
under the nonlinear tax system as a function of the underlying wealth and state
varlables in the economy. The value(price) of information has also obtained.

Two types of uncertainty-information structure have been analyzed . One is a
noisy information structure and the other is an incomplete or partial information
structure. These two structures determine the two fundamental valuation partial
differential in the presence of differential tax rates, one equation for one information
structure. The combination of the solutions to the fundamental valuation equations
with these information structures can provide answers to a wide variety of questions
about the stochastic structure of asset prices and tax effects on them. The taxes
have impact on the asset prices and the riskless interest rate. The riskless return
is hedged against the unfavorable shifts in the investment opportunity set through
income - tax rates.

The intertemporal general equilibrium model of asset pricing derived in the prese-
nce of differential tax rates can be extended to the case of a heterogeneous informa-
tion structure. Under the rational expectations equilibrium concept, this extension
would give interesting results about the aggregation across all investors of heteroge-
neous private information held by individuals and the relevation of private information
through the prices of capital assets. Then this model would determine an equation
for the cost of information acquisition, which is of great interest to all investors.

Furthermore, it would clarify in some detail the efficient market hypothesis.
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Footnotes

1) Each specific information structure will be described in detail in Sections 3 and
4, respectively,

2) A Wiener process or a Brownian motion process {z(¢)} is a stochastic process
on a probability space (€}, B, P) with the following properties.
(1) The process starts at 0, ie. 2(0)(®)=0 a.s.
(ii) The increments of the process z(t)—z(s) are independent random variable,

ie.,
P[Z(tj) - Z(T(j.l) (= Aj for jé n] = JI;IF [Z(tj) - Z(tj.l) = A,J .

(iii) The increment z()—z(s), £2s is normally distribued with mean 0 and varia-
nce (1-s).
(iv) For each w €8, z{f)(w) is continuous in ¢ for £20.
A stochastic process is said to be continuous if its possible realizations -
or sample paths are continuous with probability one.
3) Sudden changes in the economic variables can be introduced into the model
by using the Poisson process. Merton(1976) and Cox and Ross(1976) used both
a Wiener process and a Poisson process to develop the option pricing model.
4) For the detailed explanation of the form of the budget equation, see Merton(1971,
1973).

5) Suppose we have a stochastic dynamic programming problem

JX, y=Max EfTH(X(t), v(t), t) dt
st t
dX=a(X(t), v(t), )+ oX(t), v(t), t)dz(t)
X(0)=X, s
X(D=Xr 5
{vi} €V,

where state variables X(%) is continuous and control variable v(?) is piecewise

continuous. V is an admissible control. Then the Bellman equation is
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0=Max(H(- )+ Lo+ 22 ax( )+ 22LL (.
For the details of the stochastic dynamic programming and existence of the
optimal control, see Kushner(1967, Chapter IV).

6) As described in Section 2, if those conditions are satisfied, we can have the
unique optimal solution to our decision problem.

7) For a survey of methods, see Brennan and Schwartz(1978) and Geske and Shastri
(1985).

8) Itd’ s lemma is a stochastic differential rule for a function of a diffusion process.
The stochastic differential equations and the stochastic integrals do not obey
the rule of ordinary differential calculus. The main reason for this is that the
increment of a Wiener process dz(t) is of magnitude dt in the mean square
metric.

Let W(tx) be of class'? where x is an n-dimensional vector. Let the n-dimensio-

nal vector x satisfy the stochastic differential equationwhere

dx=ax, t)+o(x, t)dz

where stochastic process {z(t), ¢ €T} is a Wiener process with incremental co-

variance vdt. Then Ito’ s lemma states that W(¢x) satisfies the following differential

equation -
dW=—-"— aW dt+2Ld i+ 1% Z oW oaoudt
a i ijk=1 aXla Xj
= ['LW' +3 -M-a +1 > oW 0O dt+E-L(odz)
ot 1 OXi ijk=1 o0x 16 j

For proof, see Lipster and Shiryayev(1977, vol.l, pp.118-122).

9) Consider the situations where a firm issues callable bonds. The< Theorem states
that the maturity data T and the calable time must be specified in the centract.
Investors have knowledge about the price of the bond that will be called at
time t and the price of the bond that will not.

As another example, consider a time deposit in a bank. Suppose that the deposit
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is insured. Then the second term of the Theorem guarantees that the depositors
will receive @ with no uncertainty when the bank goes into bankruptcy. If the
marginal consumption is zero, then ® discounted at the discount rate is a sure
thing for the depositors to receive under any situation. As a consequence the
Theorem may imply that perhaps the insurance policy is the best policy if and
only if the regulatory agencies believe that the failure of a single bank would
have tremendous impact on the economy and that any measures to prevent
such a thing must be taken at any costs. The Theorem clearly shows that the
contract between the bank and the depositors is necessary and sufficient condi-
tions for both parties to maximize their own welfare. Depositors will get maximum
possible payment if they retain their deposits in the bank until the maturity
date. On the other hand, if they make premature withdrawals, then they must
compensate the bank for their early actions due to the premature termination
of the contract.

10) A singal process describes the state of a system, but cannot be observed directly.

Instead, we can only observe some noisy function {y(¥)} of {x(®)}
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