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= ABSTRACT =

The change of the acridine orange absorbance was used to monitor the formation and/or dissipation of a
pH gradient in microvillous membrane vesicles (MVYV) isolated from human term placenta. Under Na* ef-
flux conditions, an acidification of the intravesicular space occured and it was completely inhibited by
0.1 mM amiloride. Under K* efflux conditions, an acidification of the intravesicular space occured and it
was potentiated by valinomycin or FCCP. An inwardly directed chloride gradient also induced a minor
intravesicular acidification, but it was not observed in voltage-clampled MVYV. The initial rate of the dissi-
pation of a pH gradient was accelerated by pulse injections of Na* in a saturable manner and Li* could re-
place Na*. The Kkinetic parameter of Na* in placental Na*/H* exchange was similar to that of renal Na*/
H* exchange. Amiloride was a inhibitor of directly coupled Na*/H"* exchange and its ICs, in placental
MYVYV was about 14-fold higher than that in renal brush border membrane. These results indicate that Na*
/H* exchanger exists in human placental MVV and that its kinetic characteristics is similar to that of
renal Na*/H* exchanger but its pharmacological characteristics is different. In placental MVV K*, H*,
and, relatively minor chloride conductances are present. The magnitude of Ct'/OH" exchange, even though

it exists, seems to be smaller than that of Na*/H* exchange.
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INTRODUCTION

The human placental epithelium performs a
critical function in fetal development by me-
diating the transfer of metabolites between
maternal and fetal circulations. At the cellular
level, the syncytiotrophoblast serves as the
functional unit of the placenta by expressing a
polarized distribution of transport process at
its apical and basal membranes. The morpho-
logical specialization of the apical or maternal
side of the syncytiotrophoblast as brush bor-
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der is certainly well-suited to the purpose of
transcellular transport (Shennan & Boyd,
1987). Similar to renal and intestinal epithelia
the isolation as membrane vesicles of this
morphologically specialized membrane has
greatly facilitated the study of placental epi-
thelial transport by the identification and
characterization of transport pathways at the
apical side of the syncytiotrophoblast. Fur-
thermore, the availability of isolated mem-
brane vesicle preparations may prove to be es-
pecially significant for investigations of pla-
cental transport function because, unlike renal
or intestinal epithelia, only a limited amount
of information may be obtained from the
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alternative experimental models currently at
hand. Since Smith et al. (1974) reported at
first the successful isolation of microvillous
membrane vesicles (MVV) from human pla-
centa, extensive studies about mechanisms of
organic solute and anion transport have been
made in MVV (Shennan & Boyd, 1987).

Passive and ion-coupled proton permea-
bilties in biological membranes are important
for regulation of cell pH and for the net
transepithelial transport of ions and proton e-
quivalents. In biological membranes, passive
proton transport in HCO; -free media occurs
primarily by electrogenic passive diffusion
and electroneutral Na*/H* and CI/OH
countertransport (Reenstra et al, 1981;
Verkman & Ives, 1986). Although it has been
reported that Na*/H* exchange is present in
placental microvillous membrane (Balkovetz
et al, 1986; Ganapathy et al, 1987), the rela-
tive contribution of Na*/H* exchange, proton
conductance and CI/OH" exchange in proton
transport in placental microvillous membrane
has not been known. ]

Acridines have been used to examine pH
gradient in several different vesicular systems
(Aickin & Thomas, 1977; Cala, 1980; Johson
et al, 1976; Thomas, 1977; Thevenod et al,
1989). These methods follow absorbance in-
tensity and record the change in extravesicular
probe concentration that results from uptake
of the probe into the intravesicular space. A
distinct advantage of these optical methods is
that they provide a direct "on-line” measure-
ment of the pH gradient. Therefore, the pres-
ent study used the acridine orange (AO)
absorbance change to characterize the path-
way of proton transport in MVV from human
full term placenta.

METHODS

Membrane preparations

MVYV from normal term placenta were iso-
lated by the method described by Balkovetz et
al. (1986). Placenta was obtained within 15

min of delivery by elective Caesarean section
and chilled on ice. All subsequent steps of the
procedure were carried out on ice or in re-
ferigerated centrifuges. The villous tissue was
quickly dissected from the chorionic plate and
minced into small fragments. The tissue frag-
ments were rinsed three times in 300 mM
mannitol, 10 mM HEPES-Tris (pH 7.4) and
gently stirred for approximately 30 min using
a teflon spatula. The tissue suspension was fil-
tered through cotton gauze. The filterate was
centrifuged 10,000g for 10 min using a SS-34
rotor (Sorvall). The low-speed pellet was dis-
carded and the supernatant was centrifuged at
48,000g for 30 min. The high-speed pellet was
gently resuspended and MgCl; was added to a
final concentration of 10 mM. After treating
for 15min the membrane suspension was cen-
trifuged at 3,000g for 15 min to pellet the
Mg?*-induced aggregates. The low-speed
supernant was centrifuged at 100,000g for 30
min and the resulting pellet (MVV) was
resuspended and washed twice in buffers des-
ignated for each experiment. The vesicles
were preloaded with a buffer of desired ionic
composition by an incubation for 2 h at room
temperature. The composition of the buffer is
given in the legend to the figure. The final
protein concentration was measured and
adjusted to be 10 mg/ml placental MVV pre-
parations.

Brush border membrane vesicles (BBMV)
and synaptosomes were prepared using a Mg**
precipitation method from rabbit renal cortex
(Aronson, 1978) and using the method of
Hajos (1975) from rabbit cerebral cortex,
respectively. The vesicles were preloaded with
100 mM mannitol, 100 mM KCl, 20 mM
Mes-Tris (pH 6.0 at 25° C). The final protein
concentration was adjusted to be 10 mg/ml
for each membrane preparations.

Measurements of pH gradient and membrane
potential

Proton uptake experiments were performed
at 25°C on a Hewlett-Packard diode-array
spectrophotometer (HP8452A) in the dual wa-
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velength mode, using acridine orange (Burhan
et al, 1982). The absorbance was monitored at
494 nm using 546 nm as the reference wave-
length. The cuvette was filled with 2 ml buffer
containing 6 #M acridine orange. The compo-
sition of the buffer is given in the legend to
the figure. The ionophores used in this study
were added from ethanol stock solutions. The
experiment was started by an injection of 10
¢l of membrane suspension to obtain a final
protein concentration of 100 xg/2 ml.

The measurement of potential change in
MVYV was performed at 25°C on a Hewlett-
Packard diode-array spectrophotometer
(HP8452A) in the dual wavelength mode,
using 3,3’-diethyloxadicarbocyanine iodide
(DiO-C:-(5)) (Kragh-Hansen et al, 1982). The
absorbance was monitored at 574 nm using
604 nm as the reference wavelength. The de-
tailed experimental procedure was given in
the legend to the figure 2.

Transport studies

The uptake of ['*Clsuccinate was measured
by a rapid filtration technique similar to that
described by Berner & Kinne (1976). Briefly,
the reaction was initiated by adding mem-
brane vesicles to buffer (a 1:10 dilution of
membrane vesicle suspension) containing ra-
dioactive substrate at 25° C. The composition
of the incubation medium was indicated in
the figure legend. At specified times, 100 zl
samples were taken and quickly filtered under
vaccum through Millipore filters (HAWP; 0.
45 pm pore size). Filters were washed with
5ml of ice-cold stop solution, containing
100 mM mannitol, 100 mM NaCl and 10 mM
HEPES-Tris, pH 7.5. The filters were dis-
solved in methoxyethanol counted by liquid-
scintillation counter (Packard 300C).

Measurements of protein and marker enzymes

Protein was determined by the method of
Bradford (1976), with gamma-globulin as a
standard. Na-K-ATPase activity was mea-
sured by the method of J¢rgensen and Skou
(1972) and alkaline phosphatase activity by

the method of Linhardt and Walter (1963).
Data analysis

Results are expressed as means =S.E.M..
Statistical comparisions were made with stu-
dent’s t-test. P values greater than 0.05 were
considered to be nonsignificant.

Materials

"C-succinate was obtained from Du Pont-
New England Nuclear (Boston, MA), DiO-C,-
(5) from Eastman Kodak (Rochester, NY),
and acridine orange, amiloride, FCCP*,
HEPES, MES and valinomycin from Sigma
Chemical (St. Louis, MO). All other chemicals
were of at least reagent grade. Tetra-
methylammonium (TMA) gluconate was made
by titrating solutions of TMA hydroxide with
gluconic acid.

*FCCP, carbonyl cyanide p-trifuoromethoxy-
phenyl hydrazone

RESULTS

Characterization of MVYV preparation

The purity of the preparared MVV was
measured by comparing the enzyme activities
in the homogenate and the final vesicle prepa-
ration. Alkaline phosphatase, an enzyme
known to be present in the microvillous mem-
brane, was enriched more than 18-fold in all
preparations. The activity of Na*-K*-ATPase
was slightly enriched in these preparations
(Table 1). These data are similar to those ob-
served by others (Karl & Fisher, 1990; Gla-
zier et al, 1988). As they explained, the mod-
est increase in Na*-K*-ATPase activity may
be due to the fact that the placenta consists of
structures which are mostly devoid of Na*-K*
-ATPase. Therefore, the whole tissue
homogenate is relatively low in activity, mak-
ing detection difficult, and the slightest con-
tamination during purification could result in
apparent enrichment.

In order to test functional integrity of our
MVYV preparations, we measured the uptake
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Table 1. Specific activities of marker enzymes in the placental microvillous membrane and in the homogenate

Microvillous membrane

Enrichment factor

6.92+1.31 18.21

12.29+1.40 3.74

Enzyme Homogenate
Alkaline phsophatase 0.38+0.05
(nmole p-nitrophenol/mg/min)
Na*-K*-ATPase 3.28+1.33
(nmole Pi/mg/min)
T 300 O=-=—0: Na*
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Fig. 1. Uptake of succinate in the presence of a Na*
gradient or a K- gradient. The membrane
vesicles were preloaded with 300 mM
mannitol, 10 mM Hepes-Tris, pH 7.5. Up-
take of succinate was measured during in-
cubation of vesicles in a medium contain-
ing 10 M succinate, 10 mM Hepes-Tris
(pH 7.5), 100 mM mannitol and either
100 mM NaCl (O) or 100 mM KC! (@).
Data were means=S.E.M. of duplicate
measurements from 3 different prepara-
tions.

of succinate, which has been known to be
transferred by Na*-cotransport mechanism in
MVYV (Ganapathy et al, 1988; Ogin & Grassl,
1989). Time-dependent uptake of succinate
was shown in Fig. 1. The presence of an in-
wardly directed Na* gradient stimulated the
transport of succinate relative to that with a
potassium gradient. The uptake was rapid at
the beginning, representing an "overshoot”
phenomenon which peaked at 3min, and grad-
ually approached equilibrium by 90min, the
last time point measured. These results indi-
cate that Na* cotransport system for succinate

is present in our MV'V,
Proton transport pathway in MVV

In order to study pathways for proton trans-
port in placental MVV we changed the ion
gradients imposed (Na*,K*, Cl- or H*) and
observed effects of cation specific ionophores.
Vesicles preloaded with a buffer containing
100mM KCI were injected into a buffer con-
taining TMA-CI instead of KCl (Fig. 2). In
the absence of ionophore (curve b) an
intravesicular acidification was observed com-
pared to the condition where vesicles were di-
luted with a buffer containing KCl (curve a).
The absorbance change induced by the K*
gradient was increased by the addition of
FCCP (curve c¢) or valinomycine (curve d),
suggesting that the intrinsic proton and potas-
sium conductances are considerable. In MVV
the simultaneous presence of potassium selec-
tive ionophore valinomycin and of the
protonophore FCCP further increased an
intravesicular acidification as indicated by the
large and fast decline of the acridine orange
absorbance (curve e). ‘As the preset transmem-
brane ion gradients collaped with time, the
pH gradient generated was transient. The pat-
tern of the absorbance change was very simi-
lar to that of valinomycin-induced hyperpola-
rization signal which was recorded by a poten-
tial sensitive dye in the same experimental
condition (Fig. 2, inset).

Vesicles preloaded with a buffer containing
100mM NaCl were injected into a buffer con-
taining TMA-CI, instead of NaCl (Fig. 3). In
MVYV a transient intravesicular acidification
was observed as indicated by the transient de-
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Fig. 2. K*-gradient dependent formation of pH gradient in placental MVV Vesicles were preloaded in
100mM mannitol, 100 mM KCI, 10 mM Hepes adjusted with Tris to pH 7.5. 10 ¢l (100 pg) of pla-
cental MVV were injected into 2 ml of a buffer containing 100 mM TMA chloride, 100 mM manni-

tol and 10 mM Hepes-Tris, pH 7.5, 6 uM acridine orange and 0.5% ethanol (| ). Curve b: absence of
ionophores; curve c: 5 pM valinomycin; curve d: 10 uM FCCP; curve e: 5 uM valinomycin and 10 pM
FCCP. In curve a vesicles were injected into a buffer containing 100 mM KCl instead of TMA Cl. 5
wl of 1% Triton X-100 was added to the cuvette (1 ). Inset: The typical recording of potential change
in placental MVV. Vesicles were preloaded in 100 mM mannitol, 100 mM KCI, 20 mM Hepes-Tris,
PH 7.5. 50 pl(500 pg protein) of placental MVV were injected to 2 ml buffer containing 100 mM
TMA Chloride, 100 mM mannitol, 20 mM Hepes-Tris, pH 7.5, 15 uM D.O-C.-(5). After stabilization
of absorbance, 5 uM valinomycin was injected to induce hyperpolarization of MVV (| ).

crease of the acridine orange absorbance H* exchange is responsible for the in-

(curve a). Sodium efflux related influx of pro-
tons can be attributed to at least two different
events: a) conductive coupling of sodium ef-
flux and proton influx; b) direct coupling via
a common transport pathway (Na*/H* ex-
change). To distinguish between these possi-
bilities we tested the effects of amiloride and
FCCP. The intravesicular acidification was
decreased by the addition of FCCP (curve b)
and completely abolished by 0.1mM
amiloride (curve ¢), which indicated that Na*/

travesicular acification induced by a outward-
ly directed Na* gradient. In the presence of
amiloride, an increase of the proton conduc-
tivity by FCCP did not induce in-travesicular
acidification compared to the condition in the
absence of FCCP (curve d), suggesting that
the intrinsic sodium conductance in MVYV is
very low.

When an inwardly directed Cl- gradient was
imposed, acidification of the vesicle interior
occured as shown in Fig. 4. If the decrease in
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Fig. 3. Na'-gradient dependent formation of pH gradient in placental MVV. Vesicles were preloaded in 100
mM mannitol, 100 mM NaCl and 10 mM Hepes adjusted with Tris to pH 7.5. 10 ul (100 pg) pla-
cental MVV were injected into 2 ml of a buffer containing 100 mM TMA chloride, 100 mM manni-
tol, 10 mM Hepes-Tris, pH 7.5, 6 uM acridine orange and 0.5% ethanol (). Curve a: absence of
ionophores; curve b: 10 uM FCCP; curve c: 0.1 mM amiloride; curve d- 10 uM FCCP and 0.1 mM
amiloride. 5 pd of 1% Triton X-100 was added to the cuvette (1 ).

CI”
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Fig. 4. Effect of chloride gradient on the formation of a pH gradient in placental MVV. Vesicles were
preloaded with 100 mM TMA gluconate, 50 mM K*-gluconate and 10 mM Hepes adjusted with Tris
to pH 7.5. 10 p1(100 pg) placental MVV were injected into 2 ml of a buffer containing 100 mM
TMA chioride, 50 mM KCI, 10 mM Hepes-Tris, pH 7.5, 6 uM acridine orange and 0.5% ethanol (
V). 5 1 of 1% Triton X-100 was added to the cuvette (1).
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Fig. 5. Effect of sodium on the dissipation of a preset pH gradient in placental MVV. Vesicles were preloaded
in 100 mM mannitol, 100 mM KCI, 10 mM Mes adjusted with Tris to pH 6.0. 10 pl (100 ug pro-
tein) of placental MVV were injected into 2 ml buffer containing Hepes-Tris (pH 7.5), instead of Mes-
Tris, 6 uM acridine orange (| ). After about 5 s concentrated salt solution (adjusted to pH 7.5) were
injected (1 ). Salt injection increased the salt concentration in the cuvette by 25 mM NaCl, 25 mM

LiCl or 25 mM KCl.
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Fig. 6. Effect of external Na* on initial rate of Na*
/H* exchange in placental MVV and
kindney cortical BBMYV. Experimental
condition was as same as described in Fig.
5. The concentration of Na* was varied
from 2.5 mM to 50 mM and the total con-
centration of injected salt was maintained
at 50 mM, replacing Na* with TMA*. Ini-
tial rates were measured during the 2-s
period after addition of Na* to the external
buffer. Data were means+S.E.M. of dupli-

cate measurements from 3 different prepa-
rations.

absorbance of acridine orange by inwardly di-
rected Cl° gradient result from ClI/OH  ex-
change which is an electroneutral process, it
would occur in voltage clamped vesicles. How-
ever, it was not observed in voltage clamped
vesicles (Ki,=K.,.. with valinomycin), suggest-
ing that an intravesicular negative potential
generated by inwardly directed Cl° gradient
induces intravesicular acidification.

Characteristics of placental Na*/H* exchanger

The activity of the Na*/H* exchange
system can be studied by proton efflux experi-
ments using the absorbance of AO. Proton ef-
flux experiments were performed by diluting
vesicles, preloaded with 100mM KCl at pH 6.
0, with external buffer containing 100mM
KCI at pH 7.5; steady-state decrease of AO
absorbance developed during the next Ss.
NaCl was then added and the rate of AO
absorbance recovery was measured (Fig. 5).
Increase in AO ab-sorbance recovery was ob-
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Fig. 7. Eadie-Hofstee plot of the data in Fig. 6: Initial rate (v) versus initial rate divided by external Na*

concentration (v/S).

served by the addition of Na*. Li*, which is
one of the substrates for Na*/H* exchanger
(Mahnensmith & Aronson, 1985), also in-
creased absorbance recovery, although its
magnitude was smaller than that induced by
Na*. In contrast, only minor change in AO
absorbance recovery was observed after
addition of K*.

To compare kinetic characteristics of Na*/
H™* exchange in placental microvillous mem-
brane and renal brush border membrane, ini-
tial rates were calculated from the tangents to
the absorbance recovery curves for the first
two seconds after NaCl addition (Fig. 6). In
both preparations the initial rate of AO
absorbance recovery was increased and satu-
rated as the external concentration of NaCl
was increased. The initial rate (v) for the Na*
/H* exchanger was plotted against initial rate
divided by external Na* concentration (v/S)
in Fig. 7. The Na™* concentrations required for
the half-maximal rate of AO absorbance re-
covery (Kw.) in placental MVV and renal
BBMV were 13.37+£1.12 and 14.79+1.34

mM, respectively, and the maximal rates (Vumax)
were 1.15+0.10 and 1.69+0.18 (Adossee/
min/mg protein), respectively. Hill coefficients
calculated form the data in Fig. 7 were 0.998
for placental MVV and 0.905 for renal
BBMY. These values were nearly one, indicat-
ing an apparent lack of cooperativity of the
antiporter.

We have compared the sensitivities of the
placental, renal and synaptosomal Na*/H* ex-
changers to amiloride. The experiments were
conducted under identical conditions, using
vesicles from human placenta, rabbit kidney
cortex and rabbit cerebral cortex. In each case,
the Na*/H* exchanger activity was quantified
by measuring the initial rate of AO
absorbance recovery in the presence of an out-
wardly directed proton gradient (pH,=6.0; pH,
=7.5). The results were given in Fig. 8. The
Na*/H* exchanger of each preparation was in-
hibited by amiloride in a dose-dependent
manner. The Na*/H* exchanger of placental
brush-border membrane exhibited greater sen-
sitivity to amiloride than that in the Na*/H™*



—Proton Transport in Human Placental Microvillous Membrane Vesicles— 57

Ki(l‘M)

®: Placenta 6.76
A: Synaptosome 9,44
91.72

120 ¢
100 O Kidney
S 80
c
8 60}
K
40+
20 +
O o

7 6

- Log [Amiloride], M

Fig. 8. Dose-response of amiloride inhibition in placental MVV, kidney BBMV and synaptosome. The
absorbance change by the addition of 25 mM Na* was measured in the presence of a proton gradient
(IpH}i=6.0; [pH]o=7.5) and various concentrations of amiloride. Data were means+S.E.M. of dupli-
cate measurements from 3 different preparations and were plotted as % of control value.

exchanger of the renal brush-border mem-
brane. The inhibition constants for amiloride
(Ki) were given in Fig. 8. The kidney/placenta
ratio of the K; value was 13.6 and the
synaptosome/placenta ratio wasl.4.

DISCUSSION

The present study was designed to identify
hydrogen transport pathways in MVV from
human full term placenta. The experimental
data indicate that Na*/H" exchange and pro-
ton conductance are major pathways for pro-
ton transport across placental microvillous
membrane. In this experiment, we could not
observe absorbance change by ClI/OH  ex-
change. However, Illsley et al. (1988) have ob-
served ClI/OH™ exchange in microvillous
membrane vesicles using SPQ (6-methoxy-N
[3-sulfopropyl] qui-nolinium), a chloride-sensi-
tive dye. Such a discrepancy between the ex-
perimental results using pH-sensitive and

chloride-sensitive dyes was also observed in
renal BBMV (Cassano et al, 1984; Seifter et
al, 1984; Chen et al, 1988; Shivan &
Weinstein, 1984). This could be explained by
the difference in passive permeabilities to CI-
and proton in the membrane. It is not possi-
ble to demonstrate Cl/OH~ exchange from
measurements of intravesicular pH by optical
probes such as acridine orange and 6-
carboxyfluorescein, when the magnitude of CI-
/OH" exchange is much less than that of the
passive proton flux. In contrast, it is possible
to measure lower rates of CI'/OH" exchange
when Cl° rather than pH is the measured
quantity because of the lower rate of intrinsic
CI" flux.

The data from this experiment indicate that
the conductance pathways for K* and Cl are
present in placental MVV and that the per-
meability of MVV to Na* is very low com-
pared to those of K* or H*. It is not clear
whether the conductance pathways for ions
observed in this experiment are also present
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in microvillous membrane of intact syncy-
tiotrophoblast cells, since it has been reported
that ionic permeability of membrane can be
changed during preparation of membrane ves-
icles (Sabolic & Burckhardt, 1984; Glazier et
al, 1988). Since, despite this problem, the
present data of ionic conductive pathways are
compatible to those of other studies using ra-
dioisotope (Chipperfield et al, 1986; Christine
& Shennan, 1987) or fluorescent dyes (Illsley
et al, 1988), the K*, H* and CI" conductances
observed in this experiment should not be

considered as artifacts which are only ob-

served in our MVV preparations.

Since the original demonstration in 1976 of
the presence of the Na*/H* exchanger in
brush-border membranes isolated from small
intestine and renal proximal tubule (Murer et
al, 1976) the Na*/H™ exchanger has been
identified in cells as widely differing in struc-
ture and function as fibroblasts, neuronal and
glial cells, lymphocytes, neutrophils, platelets,
myocytes, and epithelial cells from renal tu-
bule and intestine (Mahnensmith & Aronson,
1985). The data from this experiment indicate
that, as previously observed (Balkovetz et al,
1986; Ganapathy et al, 1987), Na*/H* ex-
change is present in placental microvillous
membrane and that the Na*/H* exchanger in
placenta is kinetically similar to that in kid-
ney but has pharmacological characteristics
differnt from kidney. Recently, Haggerty et al.
(1988) published evidence indicating that two
types of Na*/H* exchangers with distinct
pharmacological properties exist in cultered
kidney cells (LLC-PK, and Madin-Darby ca-
nine kidney), one in the brush-border mem-
brane and the other in the basolateral mem-
brane. These two exchangers, which appear to
be under separate genetic control, can be dis-
tinguished by their sensitivities to inhibition
by amiloride or its analogs. The brush-border
membrane Na*/H™ exchanger is less sensitive
to the inhibitors than the basolateral exchang-
er. A similar observation has been made more
recently in  intestinal  epithelial cells
(Knickelbein et al, 1988). Interestingly, the

exchanger found in the plasma membrane of
other n'onpolarized cells also shows high sensi-
tivity to amiloride similarly to that of the the
basolateral exchanger of the cultured renal
cells. It is, therefore, apparent that the Na*/H™*
exchanger of the human placental brush bor-
der membrane is more similar to the exchang-
er found in the plasma membrane of other
nonpolarized cells than to the exchanger in
the renal brush-border membrane.
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