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Abstract

This paper presents a new temporal reasoning scheme based on explicit expression of time

intervals. The proposed scheme deals with the general problem of temporal knowledge representa-

tion and temporal reasening and may be used in rule-based systems and qualitative models.

Time intervals, not time points. are defined in terms of orders and.~ or numbers in a quantity

space. As a result, the system behavior is represented in the form of partially ordered netwokrs.

Such explicit and qualitative description of temporal quantities enables both reduction of ambiguity

and parsimonious used of temporal information. Based on the proposed temporal reasoning

scheme, a new rule based qualitative simulation system is being built and evaluated.

1. Intreduction

Human knowledge of all dynamic mechanisms
and causal systems has depth along the time axis.
While most of current reasoning systems and kno-
wledge representation schemes maintain truth tab-
les for sets of facts, the truth of a fact may not

be appropriately assessed to be flat T or F in many

cases. A fact which is now true may have been
false before and the past information may still be
indispensable in current reasoning- Any sophisti-
cated world model should have the capability of
capturing changes.

Unfortunately, since the early expert systems
were not modeled after dynamic causal relation-

ships among facts and events, temporal reasoning
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has remained a side issue until recently in the pra-
ctical implementation of knowledge-based systems.
As the dernand grows for inteliigent systems to
grasp more and more aspects of human knowledge
in application domains, temporal reasoning is be-
coming a weak link.

There has been a wide range of approaches to
temporal knowledge representation and temporal
reasoning. In this paper, problems in formal tem-
poral reasoning are first discussed and discussion
of time handling in qualitative simulation follows.
An improvement for both worlds is possible using
the concept of quantity space for processing time
intervals. Finally, a representation scheme, SEN
(State-Event Network} is presented with a suppor-

ting quantity space management system.

2. Formal Temporal Reasoning

Allen(2] categorized the approaches to temporal
reasoning into four groups. The first is state space
approaches, inspired by the classic situation calcu-
lus, in which a state is defined to be a description
of the world at an instantaneous peint in time.
Actions are then modeled as functions mapping be-
tween states. Naturally, the main problem of this
method is that it is too costly to retain a series
of states as time passes through many time points.

The second type of approaches is what may be
called the data line approaches. In this approaches
each fact is indexed by a time point in the form
of a calendar date or an integer. As is useful in
such applications as temporal databases, this me-
thod of representation requires the knowledge of
exact time points, which is often unavailable from
the human’ s temporal knowledge. Consequently,

these methods possess very limited expressive po-

wer and will be excluded in further discussions.

The third temporal reasoning scheme uses be-
fore/after chains to represent ternporal informa-
tion. While relative temporal informatioin can dire-
ctly be handled with this scheme, the search prob-
lem to determine temporal relationship between
two events may quickly become too large for the
practically allowable search time or memory space.
The work by Allen(1, 2] is improvement and exte-
nsion of these methods.

Finally, there are formal models of time inclu-
ding situation calculus and the work by McDermott
and his colleagues{10]. Most of those are essena-
tially point-based theories, and time intervals are
derived from the points. On the contrary, as Allen
argued properly. humans reason about time more
often in terms of intervals rather than time points.

The discussion in this section will be concentra-
ted or Allen’s reasoning scheme because it is wi-
dely useful for describing dynamic mechanisms.
However, the addressed ‘scale problem’ is com-
mon to other approaches which use non-numeric,

qualifative time representation.

2-1. The Scale Problem

Allen” s formalism of temporal knowledge repre-
sentation is sufficiently compact and useful for
many purposes. He argued that two time intervals
must have one of seven possible relationships(i. e. ,
before, during, starts, etc.) or their inverses.
But such divect relationships between two intervals
are not sufficient to deal with all types of temporal
knowledge about intervals. For instance, 'state
Y begins after state X ends’ forms the relation
‘before’ in Allen’s scheme. There is no way to

describe how long after state X ends state Y begins.
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Formally, his representation may be said using

ordinal scale. It is not full interval scale in that
the lengths of two intervals are not always compa-
rable. Instead. the relationships determine only
the orders between starting time points and ending
time points of intervals. Thus, the lengths of two
intervals can be compared only when they start
or fnish at the same time. Naturally, no operations
like addition or subtraction are possible among time
intervals. For example, the sentence ‘process A
and B can serially be finished while process C con-
tinues’ can not be described.

Mare expressing power for termporal knowledge
representation may be achieved by employing true
interval scale for the lengths of time intervals. To
do this, the lengths of durations should be coded
in a way that their relative magnitudes are qualita-
tively described. This fits the concept of quantity
space which was developed in qualitative simulation
researchl 7, 19]. The quantity space and a tempo-
ral reasoning scheme based on it will be discussed

later in this paper.

3. Time Handling in

Qualitative Models

The concept of qualitative time plays a central
role in modeling of dynamic worlds, an area known
as qualitative modeling research. Qualitative mo-
deling has been one of the newer research areas
in artificial intelligence since the mid-1970"s. Un-
like conventional (i.e., pumeric) computer simu-
lation, a qualitative model uses qualitative descrip-
tions of essential information in the system to rep-
resent the current system state and to calculate
future states. The important advantages claimed

by this approach are its resemblance to human rea-

soning about mechanisms, the parsimonious use
of information, the capability of explanation, and
robustness. These characteristics make qualitative
models potentially useful in training{8] and aiding
[12] of operation, monitoring, and fault diagnosis.

The basic techniques of qualitative simulation
proposed by De Kleer and Brown[4]1. Kuipers[9].
and Forbus[7] are among the most well known.
They have more fundamental characteristics in co-
mmon than differencesl 3], One of the commonali-
ties is that time is represented as a sequence of
time segments. That is, any time point at which
an event occurs should be determined on the time
axis and hence in relationship to the time peints
of all other events before and after it. Only the
order of events is significant in the reasoning while
the lengths of intervals are irrelevant. Although
such handling of time has been regarded quite na-
tural for qualitative simulation, the idea of comple-
tely ordered sequence of time points imposes great
limitations on the qualitative reasoning about com-
plex dynamic systems.

Inu order to support such dynamic modeling, the
temporal reasoning scheme is required to be both
efficient and expressive. Generality is also vital
since the systems to be modeled are diverse in
time scope and the characteristics of underlying

dynamics.

3-1. The Problem of Temporal Ambiguity

A problem with the single-line time axis is that
insignificant ambiguities increases the complexity
of reasoning. Whenever the order of two events
is not readily determinable, there arises a “burst’
inte two or more possible paths of future events.
Such ambiguity may or may not be significant in
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predicting the meaningful future state of a system.
In many cases, a subsequent ‘merge’, a same
system state reached through either paths, may
relieve the situatiion. In human reasoning, many
occasions of the burst,” merge would not be atten-
ded to in detail.

For example, suppose the current system state
contains states A and B and is denoted by {A B},
State A leads to a sequence of states A>C—>D
and state B leads to another sequence B — E. Then
the future system state would transit through either
{A E} or [C B} as shown in Fig. 1. However,
if the combination of A, E or C, B does not affect
the two paths of system behavior, the final resul-
tant state will unambiguously be {D E}. Whether
C occurs before E does not need to be determined
unless {A E} or {C B} itself carries some significa-
nce. This example indicates that the reasoning
scheme.should allow parallel paths of situation de-
velopment without trying to generate all the comp-
letely ordered sequences.

In contrast with the above example, humans
would use partial ordering of events when needed
for unambiguous reasoning as diagrammed in Fig.
2. It is reasonable to believe that if such partial

ordering of events is facilitated a qualitative model
following more closely the human mental models
may be built.

The second problem is that the completely orde-
red eveni sequence is implied by the assumption
that the orders of events can be derived from the
system dynamics. Explicit description of the leng-
ths of time intervals is not employed. As a result,
system behavior involving combination and inter-
vention among states may not be inferred in a strai-
ghtforward way. It is when the combination or in-
tervention affects a next state that an ambiguous
order of events hampers the model’s predictive
power most seriousley.

In the above example, if {A E} produces state

O >Q >'O -
A
‘Bgm{ers may be
specified
O h-O -
B E
Fig. 2. Parfial Ordering of Events

s = (e = (Cee)
G = Cad = G
Gad = G = @

Fig. 1.

Possible Paths of the System

State
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F which in turn is mandatory for the development
of C— D, then whether B—=E arises before A
— C becomes critical for the success of the opera-
tion. A way of describing the relative lengths of
the transition time for those rules is called for.
When this temporal information is lacking, no com-
pensation is possible no matter how smart the rea-

soning system is.
4. Handling Temporal Causalities

4-1. Time Intervals in the

Space

Quantity

The quantity space is a partial ordering on physi-
cal variable values. The partial crdering occurs
because not all comparisons are relevant to unders-
tanding the physical system qualitatively. For exa-
mple, consider a valve between two containers,
A and B. When the valve is opened. the resulting
behavior is determined by the pressures in two
containers. The pressure at other unconnected
points in the system does not affect the above re-

suit. The partial ordering may form a neiwork of

variables and constants with the links of ordinal
relationships.

When the time intervals that are related te pro-
cess and states are defined in the quantity space.
the system behavior also takes the form of a net-
work due to the resultant partial ordering among
the states. This allows the knowledge engineer
o input only the necessary specifications on the
lengths of time intervals. When temporal ambiguity
arises, more information about the involved time

intervals may be sought and input to resolve it.

4-2. State-Event Network(SEN)

The proposed mew temporal reascning scheme
is centered around a concept named State-Event
Network(SEN). The syntax for knowledge descri-
ption is similar to the rules in expert systems.
The difference is in that a rule in SEN may contain
a time interval variable and some intervening states
besides the cause and conclusion. Moreover, a
consequential state may be specified with a dura-
tion denoted by an interval variable. SEN handles
those time intervals as ordinary quantities in the
quantity space allowing them {o have partial orders
with each other.

The ‘temporal rules’ are dynamic while the ru-
les in conventional rule-based systems are static.
When a conventional rule-based systemn finds two
rules to fire, it selects one either randomly or acco-
rding to the preappointed priority. When SEN faces
several rules to fire, it calculates the time points
of the consequences and. if comparison is possible.
executes the earliest one. Thus. the order of con-
sequences is dynamically scheduled based on the
accumulated time intervals along the event paths,
not based on the fixed priority assigned to each
mile. In cases it is not possible to determine the
order, SEN assumes that the ambiguity is insignifi-
cant and proceeds in parallel starting with all the
matched rules. A SEN simulation model can be
built interactively to reduce ambiguity by trial and
error. Once built, the model can be tested against
ambiguity, which may be resolved in many cases
by adding more temporal knowledge to the model.

The example in the previous section can be diag-
rammed as shown in Fig. 3. The nodes denote
events and the horizontal arrows denote states.
The vertical lines represent temporal relations that
affect or cause other states. Although such a diag-

ram cannot translate all system descriptions that
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A c 5 a qualitative value in the network, change it whe-
———T—--O—FQ—- —_— never required, and use it for comparison with

T

¥

-]

Fig- 3. A Simpile SEN Diagrem

the SEN is capable of handling. the figure provides
insight on how the partial ordering of events opera-

fes.

5. The Quantity Network

A quantity space management system, named
Quantity Network(QN) was developed ta support
qualitative reasoning on quantities. The quantity
system should be independent of the dynamics or
simulation models in the same manner as the arith-
metic system is. This is especially important for
dealing with both physical and temporal quantities
without discrimination. To be independent, the
quantity system should for itself preserve historica-
lly derivable information for each quantity. When
working with QN, the inference engine need not
be concerned with propagating and keeping trace
of facts as long as the facts are about quantities.
The network representation of QN and defining
working memory for each quantity help the efficie-
ncy of its independent housekeeping of the quantity
world.

QN is a muiti-order implementation of the quan-
tity space. In QN, the value of a quantity is defined
as a 'frame’ containing a set of ordinal relation-

ships the guantity has with other quantities and

other values. QN will automatically update all the
values it keeps and add more ordinal relationships
whenever doing so is necessary for preserving all
historically derivable relationships.

Frame of quantities forrz a network as shown
in Fig. 4a. The partial ordering priciple and use
of real numbers are obvious. The vertical place-
ment of quantities are meaningful only when the
quantities are connected to each other.

QN has a “sticky’ memory. For example, when
the quantity A in Fig. 4a moves up so that the
order between A and D or E as well as the order
between B and E would be lost. But, in addition
to retaining the old links A>>C and C=B, QN ma-
nages to add the links C<{D, C<{E. and C<{120
s0 that no justifiable informatiion is lost(Fig. 4b).

QN incorporates the use of Working Memory
(WMD) to preserve the results of efforts performed
to investigate ordinal relationships through the net-
work. Every quantity has a working memory frame
that contains the information to guide search in
the network. Thus, once an area has been sear-
ched for some inquiry. the next search in that area
will be much faster than the first time,

Finally, QN can handle as many differential or-
ders as the computing environment allows. Deriva-
tive values in an order are propagated to higher
orders as time advances.

QN does not care if a quantity is a physical varia-
ble or a time element. In this property, QN plays
a similar role to the real number system used in

quantitative models.
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120

120

Fig- 4o. Quantity Netwaork

6. Discussion

The temporal reasening scheme proposed in this
paper may more closely simulate the human expe-
ts’ reasoning about system behavior in many do-
mains. The most notable feature of the reasoning
scheme is the expression of time intervals in a
quantity space, which states their relative lengths
compared to each other.

The differences between SEN/ QN and other
qualitative models can be explained by their diffe-
rent objectives. Since the purpose of this system
is to emulate human reasoning, which may not
be the main cause of other qualitative models, the
system is more of an extension of rule-based reaso-
ning systems. A premise is that rule-based reaso-
ning is closer to the human reasoning about mecha-
nisms than is direct qualitative translation of the
laws of physics. When a model can more convenie-
ntly represent the human expertise about a mecha-
nism, it would be more practical to use this model
for human-computer cooperation in decision ma-
king and problem solving in large scale systems.

The methodology used in this system may well

Fig- 4b. After A Moved Up

be generalized for developing expert systems that
have better temporal reasoning capability. Tempo-
ral knowledge management for a database can also
be benefited by assigning time variables to the facts
it contains. The time variables are defined in a
SEN network which is dynamically recaltculated and
reaaranged according to the dynamic rules.

The system was written in Allegro CommonLisp
on a Macintosh II computer and is currently being
refined. Its verification is also in progress through

experimental modeling of a variety of mechanisms,
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