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Abstract

A replacement policy with repair cost Yimit is discussed. When a system fails, the repair cost

is estimated by inspection and repair is then undertaken if the estimated cost is less than a

predetermined limit L3 otherwise the system is replaced. After repair, the system is as good

as new with probability(l— p) or is minimally repaired with probability p. It is assumed that

repair cost can not be estimated exactly because of inspection error. When the faiture time follows

a Weibull distribution and repair cost a normal distribution, the value of repair cost limit minimi-

zing the expected cost rate is shown to be finite and unique.

1. introduction

The repair cost limit method has been regarded
as a good representation of the way people decide
on whether to repair or replace. In the repair cost
limit method, when a system fails, its repair cost
is estimated by inspection. If the repair cost does
not exceed the predetermined cost limit, the sys-
tem is repaired ; otherwise it is replace. Hastings

[5] considered the repair cost limit problem in the

context of a Markov decision problem and applied
dynamic programming techniques for obtaining the
repair cost limits at each repair. Nakagawa and
Osaki[8] studied a replacement policy with repair
time limit. Nguyen and Murthy[9] showed that
the result of Nakagawa and Osakil 10] is optimal
over both deterministic and random repair time
limit policies. Kaio and Osakil6] discussed a repair
limit policy with a cost constraint. In these models

{5, 6, 8, 9], it is assumed that the system is
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as good as new upon repair. Park[10, 11, 12]
proposed cost limit replacement policies under mi-
nimal repair. Bai and Yun[1] and Cleroux et al. [4]
studied age replacement policies with minimal re-
pair cost limit. A generization of these cases is
imperfect repair(see Berg et al.[2], Brown and
Proschan{3], Yun and Bai[13]1.

We study a repair cost limit replacement policy
under imperfect repair and inspection. At the fai-
lure of a system, the repair cost is estimated by
(imperfect) inspection and repair is undertaken
if the estimated repair cost is less than a limit L
otherwise, the system is replaced. When a system
is repaired at failure, it is returned to the good-
as-new state with probability(1—p) or to the good-
as-old state with probability p. It is assumed that
the repair cost is not estimated exactly(see[14]).
For general failure and repair cost distributions,
expected cost rate is obtained. When the failure
time follows a Weibull distribution and repair cost
a normal distribution, the cptimal value of repair
cost limit is shown to be finite and unique. The
effect of various parameters to optimal repair cost

limit is examined through a numerical example.
Basic Assumptions

1. Repair costs are i.i.d. r.v.s, observable th-
rough inspection.

2. Hazard rate of the system is not disturbed
by minimal repairs.

3. Replacements and repairs take only negligible
timie.

4. Planning horizon is infinite

Notation

1.7 r.v. denoting the nth failure time

F(t), R() . Cdf, cummulative hazard of T,

X. . noth repair costs a r.v.

X4 - realized value of X,

Y.. estimator of x,

LI repair cost limit

g(x), Gx) ¢ pdf, cdf of X,

h(y: | x) © conditional pdf of Y, given X,=x,

KC-), K(-): Cdf, Sfof Y,

(), ¥(- ) Pdf, Cdf of standard normal dist-
ribution

¢+ replacement cost

p - Probability that the system after repair has

the same failure rates as before failure

S.: expected cost of a renewal period

S¢: expected duration of a renewal peried

C{L) . expected cost rate

2. Model

Policy © When the system fails, its repair cost
is estimated by inspection. If the estimated cost
does not exceed a cost limit L, The systems is
repaired. Otherwise, it is replaced. The repaired
system is either as good as new with probability(1
—p) or as good as old with probability p. The

expected cost of a renewal period is given by,

8. =EpKL) I [ (n— DM, +cc]

=1

K@) +nM (1-pK(L)}

=LeK(L) + Mite(L) 1/ T1—pK(L)] +veeeee (D

where Mi=E[X, | Y,<JL].

Since the system is minimally repaired at alt the
failure until a replacement, the failure process is
NHPP with mean value function, R(t)(see[6]).

Expected duration of a renewal period is given
by
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Se=% [pK(LYI! [ K(L)+K(@L){1—p)]E(T

n=1

=[1-pK(L)If* £ {(pK(LN"* RV
il hdt

=7 expl~ROU—pKDTIt. e (2)

From (1) and {2}, the expected cost rate is

C(L) = Leo KLY+ MK(L)1/[1—pK(L))

rn e-R(t)(l-pK(L)Jdt]. .(3)

[}

3. Analysis

To obtain the optimal policy, we seek the values
of L which minimizes C(L). However, the optimal
values are difficult to obtain in general case. The-
refore, the special cases of C{L) are examined.

1. p=0(After repair, the system is as good as

new)
C=[eR(L) + MKWILS; e*dt)™

In this case, the optimal L, L*=0{When system
fails, the system always be repaired).

9. p=1(After repair, the system is as good as
old?

(L) =[K(LY+ M, KWL —KL))
Iec e-R(l}(l—K(L)J dt]—l'
o

which agrees with Yun and Bail14).

1. The conditional distribution h, (v | x}is dege-

nerate(The repair cost is estimatable exactly).

L) =LeG(L) +E. GLY1/T(1—pGLL))

J‘c: eARmu—thL))dt]

which agrees with Yun and Bail13].

4. Tt is difficult to analyze the behavior of C(L)
for general distributions. Hence. we discuss a
Weibull failure distribution and & normal repair

cost distribution -

F=1—exp(—{t/ /A%, X,~N(u, o%) and
the conditional distribution of Y, given X;=xy. is
N(xi, o%).

It can be shown that the marginal distribution
of Y1 is N{y. o,2+057). The following results can
be easily derived(see[141).

Result 1. When X,~N(w, o), m(0=]7 %,

t— t—
glmddu=p P s )—o ¢>("‘—u).
o1 Ty

Resvlt 2. J? f: Xlg(lh)h(y]. | x) deydyi =
o L—n

L~y
k48 — ) (—=
WY eire | sitor Ufertal

Using the results 1, 2, we obtain

Y.

K(L)—‘I'E—G*ﬁ)‘

L
M= {p¥( Jortar ) witar
L—u L—u
¢ (¥( IPIAN
¢"\‘/01—2_+_—62’2')} 012+ B

Hence,

L—p L—p
= el 1~ ¥ ) T ¥ (=) —
Sl o T vt
o L—pu L—

— » -1
512‘}‘0'22 ‘I!(\XGJZ"'Gzz )} {1 p‘Y(\/Gl?"'Uze )}

- — : I
S@Jf e Rl pK(L)}dt=J: P pK[L))dt

L—up
=178+ 101 p‘I’(\/E

Z +.592

))—l/ﬁ

Therefore. the expecied cost rate is as follows
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C)= {(1—p¥( et

A.F(]."' 1/5) '/012+ 022

L—u L-p

(c(1-¥(= )+ ¥ o )

\/0’12+ 0'22
o L—p

e )

~ {4

0’12‘5‘0'22

If alL)=

Lemma 1.

L—u of L—p
) — o{
Voitod oftald vorto:

then A(L) is an increasing function of L.

l.l‘l’( ) ]

Using d¥(x). dx=o¢(x? and do{x)dx

Proof.

=—xd(x), we can obtain that

oL+ 6} L
dA(L) /dL= — P o S,

[0’12+ 022]3/2 W G12+ az

Thus A(L)>>0 and is increasing function of L.

Theorem 1. The optimal repair cost limit L* mini-
mizing the expected cost rate function (4) is finite

and unique.
Proof. see Appendix.

Example 1.

Suppose that A=1, g:=1 and uy=10. Table 1

Table 1. Optimal volues of minimal repair cost limit

gives optimal repair cost limits for selected values
of B, ¢ p and . it indicates that the optimal
repair cost limit is decreasing in p but increasing
in ¢ However, we cannot find the general trend
of the optimal repair cost limit to p and o, in this

example.
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Appendix

Proof of Theorem 13

L_p 013

L—u
If let ALY =¥ ) — ¢
YT ort et c,2+022¢ \/of’"‘cf)

17g=1
)

D= —L (- p e
ST+ 18) ¥ it ’)

L=n
)3+ AL

(&(1—?(—;\/%5-;—

A necessary condition for L. to minimize C.(L) is

dC,(L)./dL=0. From Lemma 1, we can obtain

dCAL)/dL= {(1—p¥(-

1
A+ 1/B) Vartor

L=~y
\/G_12+532

L—u
Leal1— ‘I’(\/_? N+AWLDp(1-1p) +

152

l/ﬁ-2¢(

)

AV 612+02

l'_’L+ 22
L |

61'+ [¢F3

(1—p¥¢

Hence, the necessary condition can be meodified

as follows :

01,[. L—- U
p Vv 0'12+ 0')

[(p—DpAL}+ g

]

[(1-pp+p(1—¥C¢

¢
\/012‘5‘02
Let the l.h.s. of (5) be Q(L). First, we obtain
the derivative of Q(L).

M =

L—n

1
dQ(L)/dL_gHoz?q’(m)
L—u ~
LA—pIp+pl—¥( ror 1]
2L+
(p(3—1 )3_—"—5«1 2 (B—1)
L—p
+ — e —
p(1 ‘P(\m))
') L—p_
+
0'12']'01(1 p?(vw ZD
L—u

((1-p)B+p(1=¥(—
(1—p)B+p(1—¥( %012+022))

+(p— DALY >0.

Therefore, Q(L) is increasing in L. Further,
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Q) =co. If QIO >c L*=0(the system is al- and fmite.

ways replaced at failure). Otherwise, L™ is unique




