SEMI-CONTINUOUS AND SEMI-WEAKLY CONTINUOUS FUNCTIONS

Charles Dorsett

1. Introduction

In 1937 regular open sets were introduced. Let (X, T) be a space and let $A, B, C \subset X$. Then A is regular open, denoted by $A \in RO(X, T)$, iff $A = Int(\overline{A})$ [14]. In 1937 it was shown that RO(X,T) is a base for a topology T_s on X coarser than T and (X, T_s) was called the semiregularization space of (X,T). In 1963 semi open sets and semi-continuous functions were introduced. The subset A is semi open, denoted by $A \in SO(X,T)$, iff $A \subset \overline{Int(A)}$ [8]. If (Y,S) is a space and $f: (X,T) \to (Y,S)$ is a function, then f is semi-continuous iff for each $V \in S$, $f^{-1}(V) \in SO(X,T)$ [8]. In 1970 semi open sets were used to define semi closed sets, which were used to define the semi closure of a set. The subset B is semi closed iff X - B is semi open and the semi closure of C, denoted by sclC, is the intersection of all semi closed sets containing C [1]. In 1978 the semi closure operator was used to define feebly open sets. The subset A is feebly open, denoted by $A \in FO(X,T)$, iff $A \subset scl(Int(A))[10]$. Further investigations of feebly open sets have shown that FO(X,T) is a topology on X and $T \subset FO(X,T) = FO(X,FO(X,T))[3], SO(X,T) =$ $SO(X, FO(X, T))[4], FO(X, T)_s = T_s[5], \text{ and } RO(X, T) = \{scl0|0 \in T\}$ 6.

In 1961 weakly continuous functions were introduced. A function $f: (X,T) \to (Y,S)$ is weakly continuous iff for each $x \in X$ and each open set V containing f(x), there exists an open set U containing x such that $f(U) \subset \overline{V}$ [9]. Then in 1985 semi-weakly continuous functions were introduced. A function $f: (X,T) \to (Y,S)$ is semi-weakly continuous iff for each $x \in X$ and each open set V containing f(x), there exists a

Received March 12, 1987

semi open set U containing x such that $f(U) \subset sclV$ [11]. In this paper feebly open sets, semi-continuity, and semiregularization spaces are used to further characterize semi-weakly continuous functions and the results are used to further investigate semi-weakly continuous functions and to extend known results for semi-weakly continuous functions.

2. New Characterizations

Theorem 2.1. Let $f : (Y, S) \to (X, T)$ be a function. Then the following are equivalent:

(a) $f: (Y, S) \to (X, T)$ is semi-weakly continuous,

(b) $f: (Y, FO(Y, S)) \to (X, T)$ is semi-weakly continuous,

(c) $f: (Y,S) \to (X,T_s)$ is semi-continuous,

(d) $f: (Y, FO(Y, S)) \to (X, T_s)$ is semi-continuous, and

(e) $f: (Y,S) \to (X,T_s)$ is semi-weakly continuous.

Proof. Since SO(Y, S) = SO(Y, FO(Y, S)), then clearly (a) and (b) are equivalent and (c) and (d) are equivalent.

(a) implies (c): Let $y \in Y$ and let $V \in T_s$ such that $f(y) \in V$. Since $RO(X,T) = \{scl0|0 \in T\}$ is a base for T_s , then there exists $0 \in T$ such that $f(y) \in scl0 \subset V$. Then $f(y) \in scl0 \in T_s \subset T$ and there exists a semi open set U such that $y \in U$ and $f(U) \subset scl(scl0) = scl0 \subset V$. Since SO(Y,S) is closed under arbitrary unions [8], then $f:(Y,S) \to (X,T_s)$ is semi-continuous.

Since every semi-continuous function is semi-weakly continuous [11], then (c) implies (e).

(e) implies (a): Since $f: (Y, S) \to (X, T_s)$ is semi-weakly continuous, then by the argument above $f: (Y, S) \to (X, (T_s)_s)$ is semi-continuous and since $(T_s)_s = T_s$ [2], then $f: (Y, S) \to (X, T_s)$ is semi-continuous. Let $y \in Y$ and let $V \in T$ such that $f(y) \in V$. Then $scl V \in T_s$ and there exists $U \in SO(Y, S)$ such that $y \in U$ and $f(U) \subset scl V$.

Using the results above and the fact that for a space (X,T), $T_s = FO(X,T)_s$, gives the following additional characterizations of semi-weakly continuous functions.

Corollary 2.1. Let $f : (Y, S) \to (X, T)$ be a function. Then the following are equivalent:

(a) $f: (Y, S) \to (X, T)$ is semi-weakly continuous,

(b) $f: (Y, S) \to (X, FO(X, T))$ is semi-weakly continuous,

(c) $f: (Y, FO(Y, S)) \rightarrow (X, FO(X, T))$ is semi-weakly continuous, and

(d) $f: (Y, FO(Y, S)) \to (X, T_s)$ is semi-weakly continuous.

3. New Properties and Extensions of Known Properties

Theorem 3.1. Let $f : (Y, S) \to (X, T)$ be semi-weakly continuous and let $U \in S$. Then $f/U : (U, S_U) \to (X, T)$ is semi-weakly continuous.

Proof. Since $f: (Y,S) \to (X,T_s)$ is semi-continuous and $U \in S$, then by Theorem 3 in [12], $f/U: (U,S_U) \to (X,T_s)$ is semi-continuous, which implies $f/U: (U,S_U) \to (x,T)$ is semi-weakly continuous.

Theorem 3.2. Let $f: (Y,S) \to (X,T)$ be a function and let $\{A_{\alpha} | \alpha \in A\}$ be a cover of Y by semi open sets such that $f/A_{\alpha}: (A_{\alpha}, S_{A\alpha}) \to (X,T)$ is semi-weakly continuous for each $\alpha \in A$. Then $f: (Y,S) \to (X,T)$ is semi-weakly continuous.

The proof is straightforward using results above and Theorem 4 in [12] and is omitted.

Theorem 3.3. For each $\alpha \in A$ let (Y_{α}, S_{α}) and (X_{α}, T_{α}) be spaces and let $f_{\alpha} : Y_{\alpha} \to X_{\alpha}$ be function, let $Y = \prod_{\alpha \in A} Y_{\alpha}$, let S denote the usual product topology on Y, let $X = \prod_{\alpha \in A} X_{\alpha}$, and let T denote the usual product topology on X. Then the function $f : (Y, S) \to (X, T)$ defined by $f((y_{\alpha})_{\alpha \in A}) = (f_{\alpha}(y_{\alpha}))_{\alpha \in A})$ is semi-weakly continuous iff $f_{\alpha} : (Y_{\alpha}, S_{\alpha}) \to$ (X_{α}, T_{α}) is semi-weakly continuous for each $\alpha \in A$.

Proof. Let W denote the product topology on X determined by $\{(X_{\alpha}, (T_{\alpha})_s | \alpha \in A\}$. Then $T_s = W[7]$.

Suppose $f_{\alpha}: (Y_{\alpha}, S_{\alpha}) \to (X_{\alpha}, T_{\alpha})$ is semi-weakly continuous for each $\alpha \in A$. Then $f_{\alpha}: (Y_{\alpha}, S_{\alpha}) \to (X_{\alpha}, (T_{\alpha})_s)$ is semi-continuous for each $\alpha \in A$ and by Theorem 5 in [12], $f: (Y, S) \to (X, W) = (X, T_s)$ is semi-continuous which implies $f: (Y, S) \to (X, T)$ is semi-weakly continuous

The proof of the converse statement is straightforward using Theorem 5 in [12] and results above and is omitted.

Theorem 3.4. For each $\alpha \in A$ let (X_{α}, T_{α}) be a space, let X, T, and W be as in the statement and proof of Theorem 3.3, let (Y, S) be a space, let $f : (Y, S) \to (X, T)$ be semi-weakly continuous, and let $p_{\beta} : X \to X_{\beta}$ be the projection function for each $\beta \in A$. Then $p_{\beta} \circ f : (Y, S) \to (X_{\beta}, T_{\beta})$ is semi-weakly continuous for each $\beta \in A$.

Proof. Let $\beta \in A$. Since $f: (Y, S) \to (X, T_s) = (X, W)$ is semi-continuous and $P_{\beta}: (X, W) \to (X_{\beta}, (T_{\beta})_s)$ is the projection function, then by The-

Charles Dorsett

orem 6 in [12], $p_{\beta} \circ f : (Y, S) \to (X_{\beta}, (T_{\beta})_s)$ is semi-continuous, which implies $p_{\beta} \circ f : (Y, S) \to (X_{\beta}, T_{\beta})$ is semi-weakly continuous.

Example 11 in [8], which was used to show that the composition of two semi-continuous functions need not be semi-continuous, also shows that the composition of two semi-weakly continuous functions need not be semi-weakly continuous.

Theorem 3.5. Let (X_{α}, T_{α}) be a space for each $\alpha \in A$, let X, T, and W be as in the statement and proof of Theorem 3.3, let $B \subset A$, and let P denote the usual product topology on X determined by $\{(X_{\alpha}, T_{\alpha}) | \alpha \in A - B\} \cup \{(X_{\alpha}, (T_{\alpha})_s) | \alpha \in B\}$. Then $P_s = T_s$ and $SO(X, P) \subset SO(X, T)$.

Proof. Since P_s is the usual product topology on X determined by $\{(X_{\alpha} (T_{\alpha})_s) | \alpha \in A - B\} \cup \{(X_{\alpha}, ((T_{\alpha})_s)_s) | \alpha \in B\}$ and $(T_{\alpha})_s = ((T_{\alpha})_s)_s$ for each $\alpha \in B$, then P_s is the usual product topology on X determined by $\{(X_{\alpha}, (T_{\alpha})_s) | \alpha \in A\}$, which implies $P_s = W = T_s$. Let $\mathcal{O} \in SO(X, P)$. Since $P \subset T$, then $Int_p(\mathcal{O}) \subset Int_T(\mathcal{O})$ and since $Int_p(\mathcal{O}) \in P$, then $Int_p(\mathcal{O})_p = Int_p(\mathcal{O})_{p_s}[2] = Int_p(\mathcal{O})_{T_s} \subset Int_T(\mathcal{O})_{T_s} = Int_T(\mathcal{O})_T$. Since $\mathcal{O} \in SO(X, P)$, then $\mathcal{O} \subset Int_p(\mathcal{O})_p \subset Int_T(\mathcal{O})_T$, which implies $\mathcal{O} \in SO(X, T)$.

Theorem 3.6. Let (X_i, T_i) be a space for each $i \in A = \{1, 2\}$, let X and T be as in the statement of Theorem 3.3, let $f : X_1 \to X_2$ be a function, and let $g : X_1 \to X$, defined by g(x) = (x, f(x)) for each $x \in X_1$, denote the graph function of f. Then $f : (X_1, T_1) \to (X_2, T_2)$ is semi-weakly continuous iff $g : (X_1, T_1) \to (X, T)$ is semi-weakly continuous.

Proof. Suppose $f: (X_1, T_1) \to (X_2, T_2)$ is semi-weakly continuous. Let P be the usual product topology on X determined by $\{(X_1, T_1), (X_2, (T_2)_s)\}$. Since $f: (X_1, T_1) \to (X_2, (T_2)_s)$ is semi-continuous, then $g: (X_1, T_1) \to (X, P)$ is semi-continuous [13], which implies $g: (X_1, T_1) \to (X, P_s) = (X, T_s)$ is semi-continuous and $g: (X_1, T_1) \to (X, T)$ is semi-weakly continuous. The converse statement is Theorem 2 in [11].

Let Y and X be sets and let $f : Y \to X$ be a function. Then $\{(y, f(y)) | y \in Y\}$ is called the graph of f and is denoted by G(f).

Theorem 3.7. Let (X_i, T_i) be a space for each $i \in \{1, 2\}$, where (X_2, T_2) is Hausdorff, let X and P be as in the statement and proof of Theorem 3.6, and let $f : (X_1, T_1) \rightarrow (X_2, T_2)$ be semi-weakly continuous. Then G(f) is semi closed in (X, P).

Proof. Since $f : (X_1, T_1) \to (X_2, T_2)$ is semi-weakly continuous, then the graph function $g : (X_1, T_1) \to (X, T_s)$ is semi-continuous and since (X_2, T_2) is Hausdorff, then $(X_2, (T_2)_s)$ is Hausdorff [2], which implies G(f)is semi closed in (X, P) [13].

Combining the results above gives the next result, which was given as a theorem in [11].

Corollary 3.1. Let (X_i, T_i) be a space for each $i \in \{1, 2\}$, where (X_2, T_2) is Hausdorff, let X and T be as in the statement of Theorem 3.6, and let $f : (X_1, T_1) \rightarrow (X_2, T_2)$ be semi-weakly continuous. Then G(f) is semi closed in (X, T).

A space (X,T) is *S*-connected iff X can not be written as a union of two nonempty disjoint semi open sets [15].

Combining Theorem 6 in [11] with results above give the next result.

Corollary 3.2. Let (X_i, T_i) be a space for each $i \in \{1, 2\}$, where (X_1, T_1) is S-connected, let X and P be as in Theorem 3.7, and let $f : (X_1, T_1) \rightarrow (X_2, T_2)$ be semi-weakly continuous such that G(f) is closed in (X, P). Then f is constant.

The following example shows that the statement "G(f) is closed in (X, P)" in Corollary 3.2 cannot be replaced by the statement "G(f) is closed in (X, T)", where T is the usual product topology determined by $\{(X_1, T_1), (X_2, T_2)\}$.

Example 3.1. Let N denote the positive integers, let E denote the even positive integers, let 0 denote the odd positive integers, let A denote the negative integers, let $X_1 = N \cup A$, let $X_2 = A \cup \{0, 1, 2\}$, and let

$$f: X_1 \to X_2 \text{ defined by } f(x) = \begin{cases} x & \text{if } x \in A \\ 1 & \text{if } x \in O \\ 2 & \text{if } x \in E \end{cases}.$$

Then $T_1 = \{\emptyset\} \cup \{B \subset X_1 | A - B \text{ is finite }\}$ is a topology on X_1 and $\{0 \cup \{p\} | p \in X_2\}$ is a base for a topology T_2 on X_2 . Then (X_1, T_1) is S-connected, $f : (X_1, T_1) \to (X_2, T_2)$ is semi-weakly continuous, G(f) is closed in the usual product space determined by $\{(X_1, T_1), (X_2, T_2)\}$, and f is not constant.

Charles Dorsett

References

- N. Biswas, "On Characterizations of Semi-Continuous Functions," Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8, 48 (4) (1970), 399-402.
- [2] N. Bourbaki, Gerneral Topology, Addison-Wesley Publishing Co., 1966.
- [3] C. Dorsett, "Feeble Separation Axioms, the Feebly Induced Topology, and Separation Axioms and the Feebly Induced Topology," Karadeniz Univ. Math. J., 8(1985), 43-54.
- [4] _____, " New Characterizations of Certain Functions and Connected and Separable Spaces, and the Feebly Induced Topology," submitted.
- [5] _____, " New Characterizations of Topological Properties Using Regular Open Sets and r-Topological Properties," submitted.
- [6] _____, "Properties of Topological Spaces and the Semiregularization Topology," submitted.
- [7] L. Herrington, "Properties of Nearly-Compact Spaces," Proc. A.M.S., 45 no. 3 (1974), 431-436.
- [8] N. Levine, "Semi-open Sets and Semi-Continuity in Topological Spaces," Amer. Math. Monthly, 70 (1963), 36-41.
- [9] _____, " A Decomposition of Continuity in Topological Spaces," Amer. Math. Monthly, 68 (1961), 44-46.
- [10] S. Maheshwari and U. Tapi, " Note on Some Applications of Feebly Open Sets," Madhya Bharati, J. Un. Saugar, 1978-1979.
- [11] T. Noiri and B. Ahmad, " On Semi-Weakly Continuous Mappings," Kyungpook Math. J., 25 no. 2 (1985), 123-126.
- [12] T. Noiri, "On Semi-continuous Mappings," Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8, 54(1973), 210-214.
- [13] _____, " A Note On Semi-continuous Mappings," Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8, 55(1973), 400-403.
- [14] M. Stone, "Applications of the Theory of Boolean Rings to General Topology," Trans. A.M.S., 41 (1937), 374-481.
- [15] T. Thompson, "Characterizations of Irreducible Spaces," Kyungpook Math. J., 21(1978), 191-194.

DEPARTMENT OF MATHEMATICS AND STATISTICS, COLLEGE OF ARTS AND SCIENCES, LOUISIANA TECH UNIVERSITY, P.O.BOX 3189 RUSTON, LA 71272-0001, U.S.A.