Kyungpook Mathematical Journal
Volume 30, Number 1, June, 1990

ON GENERALIZED FLOQUET THEORY

A. A. S. Zaghrout

1. Introduction

One basic theory for the linear periodic system
T = A(t)z, —oo0<t< o0, (1.1)

is, of course, that of Floquet’s which says that the solution of the system
(1.1) with A(t + w) = A(t) in the form of the fundamental matrix ()
can be expressed as

®(1) = p(t) exp(tR), p(t+w)=p(t)
and R is a constant matrix
We shall use the following definition introduced in [1].

Definition 1. If f denote a function on some interval [ into itself it
will be convenient to denote by fI"l, for every non-negative integer n, the
functions defined inductively by flO(t) =t and f"l(¢) = f(f*~1(2)) for
n>0andt €l

Definition 2. If f denotes a function on I into itself then any function

(or matrix function) P is f-periodic in I if P(f(t)) = P(t) for all ¢ in I.

Definition 3. The system (1.1) is a Generalized Floquet system with
respect to f (or GFS—f) if f is an absolutely continuous function on (¢, c0),
a > —oo, such that

for almost all ¢ > o and
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forall t > a

Clearly the case A periodic with period w is given by (1.2) with f(t) =
t + w. In what follows it will be assumed without loss of generality that
« is negative.

2. Main Results

Let X be the principal matrix solution of a GFS—f (1.1). It is a well
known result of a generalized Floquet theory ([1], page 189) that (1.2)
implies

X(fM@) = x@yve (2.1)
for every t € I, V is a constant nonsingular matrix, V = X(f(0)), and if

tn = f(0) then V = X(t;),t1,tn € I.

Theorem 2.1. Assume that the system (1.1) is GFS-f and the following
conditions are satisfied;

(i) There exists a matriz B which is given a.e. (almost everywhere) on
an interval I by

;0! + fi®,A(f))®' =B, i=1,2, (2.2)

where ®, and ®, are nonsingular matrices, f; and f; are real-valued func-
tions on the interval I into (a,00), the entries of ®; and the functions f;
being absolutely continuous on I and the prime denote derivativces.

(i1) There exists points t, and ty in I such that

Rl = PR i=124#] (2.3)
where my; = 0 and my = 1, and
@;(t,‘) = C@g(ti), i 1,2 (24)

where ¢ is a scalar constant.
Then every solution of (1.1) is f-periodic on (a, o).

Corollary 2.1. If the system (1.1) is a GFS—f and there exist absolutely
continuous functions f; and f, on some interval I into (a,0), ¢ > —00
such that

f1A(f) = fA(f,) a.e. in [ (Z.2)*

anq; if there exist points t; and ty in I at which (2.3) holds then every
solgtion of (1.1) is f-periodic on (a,00).
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Proof. The result follows by taking ®; = ®, = U (the unit matrix).

Proof of Theorem 2.1

Let Y; = ®;X(f;),7 = 1,2 where X is a fundamental matrix solution of
(1.1) as in [6], ¥; and Y; are nonsingular since ®; and X are nonsingular,
so that Y] and Y; are fundamental solution matrices of

y' = B(t)y. (2.5)
Consider
Yi(t:) = @i(t:)X(filts))
= ®(t:) X f™I(f5(t)))
b g [2.8). Behce by using (951} we e

Yi(ti) = @;(t:)®7 (t:)Y;(t) V™,

J

so that for m; = 0 we have
Yi(th) = @1(t1) @5 (1) Ya(th)-
Thus by using (2.4) we have

Yi(t1) = c®@y(t)®5" (t)Ya(t1)
= cYa(ty).
Similary
Yz(tz) = (I)g(t2)q)l_l(t2)}/1(t2)vm2

Hence by using (2.4) we have
Ya(t2) = (1/e)Y1(t2) V™.

We note that the piecewise continuity of A and absolute continuity of ®;
and f; are sufficient conditions for the uniqueness of solutions of (2.5), and
hence

Yi=¢cY, and Y;=(1/c)Y1V™ everywhere in[.

Thus Y, = Y,V™2 and V™ = U since Y is nonsingular and since my = +1,
then V = U and by using (2.1) it follows that

X (1) = X (1)
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for every t > «, and integer n. This completes the proof.

Theorem 2.2. Assume that there exists a continuous or piecewise con-
tinuous matriz B such that the following condituons are satisfied:
(i) A is given a.e. on two intervals J, and J,

(J; C (a,00),a > —00,1 =1,2) by

V! + ¢!, B(g)¥;7 = A, i=1,2, (2.6)

where ¥, and V¥, are non-singular matrices, g and g, are real-valued
functions on Jy and J; respectively, the intries of ¥; and g; being absolutely
continuous on J;.

(ii) There is a point 7; in J; such that fI"(r;) € J;

gi(Ti) = g](f[n’](’rz)), Z = 1:27i 7é ] (27)
where ny = 0 and ny, = £1;
Uy (f(m) = kWy(r), i=1,2 (2.8)

where k 1s a scalar constant.
If the system (1.1) is GFS—f then every solution of it is f-periodic on
(a, 00).

The case ¥; = ¥, = U (the unit matrix) may be stated as the following
corollary:

Corollary 2.2. If the system (1.1) is GFS-f and there is a piecewise
continuous matriz B and absolutely continuous functions g, and g, on
intervals Jy and J, respectively where J; C (a,00),a > —o0,1 = 1,2, such
that

giB(gi)=A, ae inJ, 1=1,2

and if (2.7) holds at points 7; in J;, then every solution of (1.1) is f-
periodic on (a,00).

Proof of theorem 2.2. Let Y be a fundemental solution matrix of (2.5)
and let X; = U,;Y(g;), then as in the proof of theorem 2.1, one finds
that X; and X, are fundamental solution matrices of (1.1) on J; and J;
respectively. Consider
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Then by using (2.7) we have

Xi(r) = U(m)Y(g(fM(n)))
= Wi(m) ¥ () X ().
Hence by using (2.1) it follows that
Xi(r) = U(m) O () X (m) v,
so that

Xi(n) = ( )5 () Xo(m) for ny =0
= (1) 3" (1) X2(m)
= sz(Tl),

by using (2.8). Also, we have

Xo(r) = \pz(ﬁ)mfl(f[nﬂ(Tz))Xl(Tz)V”2
= (1/k)qll(f[M](T?)\pl_l(f[m](Tz))‘Xl(72)[,’"2
= (1/k)X1(m2)V™,

by using (2.8). Thus as in the proof of theorem 2.1, V = U, and X is
f-periodic on (a,c0). This completes the proof.

Remark 1. In the case that either f; and f, or g; and g, are monotonic,
Theorems 2.1 and 2.2 are statements of the same results, in this case also
corollaries 2.1 & 2.2 are equivalent. For example, if f; and f; are mono-
tonic we will show that the conditions (2.2), (2.3) and (2.4) of Theorem
2.1, may be written in the form of (2.6), (2.7) and (2.8) of Theorem 2.2,
respectively.

Let J; = f;(I) and define g; = f' (the inverse funciton of f;) and
U, = &7 (g:), (97" is the multiplicative inverse of ®;). Then as in [5],
equation (2.2) may be written in the form of (2.6). If we take 7, = fi(#;)
then (2.3) becomes

7 = f(fi(9i(m))
i.e.
FH ) = gi(w)
where fI=™ is the inverse of fI™I and this exists for the sequence fI7 s
increasing sequence from (1.3). Thus

gi(f1(m)) = gi(m), ni=-m
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which is (2.7). Also (2.4) becomes

(c®2)7(t:) = ®7'(t)
(1/c)@7'(t;) = @7 (t:)
(1/c)®7 ' (gi(m:)) = ®7'(gi(m)),i = 1,2

For : = 1, we have

(1/c)®7'(91(m1)) = @7 (g1(m))
(1/e)®7%(g2(11)) = Wy(m)

by using (2.7) for n; = 0. Hence
(1/€)Wa(ms) = Wa(m1).

Thus
Uy (fMl(n)) = kW,y(1y), k=1/c

For : = 2, we have

(1/0)®3(92(72)) = @7'(g2(72))
(1/e)Ts(rs) = @7 (g1(f1?(72))

by usiug (2.7), Hence
kWy(r2) = Uy (f1)(rp))
From (2.9) and (2.10), we have
Uy (fM(m)) = k¥y(r), 1=1,2,
which is (2.8).

Remark 2. The result of [6] is obtained by taking f(t) =t + w.

(2.10)

Remark 8. The result in [4] (Theorem 2, pp. 691) is obtained by corollary
2.1 with f(t) =t 4w, fi(t) =t, fo(t) = —t,¢; =0 and ¢, = —w/2, so that

my :0, m2:+1

By the generalized Floquet theory [1], if Xj is any continuous nonsin—
gular matrix on (@, 00) such that Xo(0) = U and satisfying (2.1), then
there exists a continuous nonsingular matrix P which is f-periodic on

(a,00) such that P(0) = U and
X(t) = P(t)Xo(?)

(2.11)
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and (as in [5], pp. 19-20), there is at least one solution z(t) of (1.1) such
that

2(f(1) = Aa() (@212)

for all ¢, where A # 0 is a constant (real or complex). In fact if 2(%) is a
solution of (1.1), then there exists a constant vector z¢ such that

2(t) = X(t)zo = P(t)Xo(t)zo (2.13)

by using (2.9). If z(t) is to satisfy (2.10), then
P(f(£)Xo(£(1))z0 = AP(t) Xo(t)z0

P()Xo(t)Vzo = AP(t) Xo(t)zo

by using (2.1). Hence
P()Xo(t)(V = AU)zo = 0.
Since P and X, are nonsingular then
(V = AU)zo = 0. (2.14)

Consequently if X is an eigenvalue of V' and z is a corresponding eigen—
vector, then the solution z(t) defined by (2.13) has the desired property.
Thus we have:

Theorem 2.3. If the system (1.1) is GFS-f, then it has a f-periodic
solution if and only if there exists an eigenvalue of V which is equal to 1.
Also if there is an eigenvalue of V which is equal to 1, then the system
(1.1) has a f-periodic solution.

Proof. Since

2(fA(t) = 2(F(f(1) = —2(f(t) = (¢)

the result follows by using (2.10) with A = —1.
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