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A CHARACTERIZATION OF REAL HYPERSURFACES
OF TYPE C, D AND E OF A COMPLEX

PROJECTIVE SPACE

REIKO AIYAMA, HISAO NAKAGAWA AND YOUNG JIN SUH

O. Introduction

A complex nC~2)-dimensional Kaehler manifold of constant holo­
morphic sectional curvature c is called a complex space form, which is
denoted by MnCc). A complete and simply connected complex space
form is a comlpex projective space PnC, a complex Euclidean space
Cn ora complex hyperbolic space HnC, according as c>O, c=O or c
<0. The induced almost contact metric structure of a real hypersurface
of MnCc) is denoted by CcP,~, 7), g).

Now, there exist many studies about real hypersurfaces of MnCc).
One of the first researches is the classification of homogeneous real
hypersurfaces of a complex projective space PnC by Takagi [14J, who
showed that these hypersurfaces of P nC could be divided into six
types which are said to be type Ah A 2, B, C, D and E, and in [5J
Kimura proved that they were realized as the tubes of constant radius
over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely,
he proved the following

THEOREM A. Let M be a homogeneous real hypersurface of PnC, on
which the structure vector ~ is principal. Then M is locally congruent
to one of the following:

CAl) a geodesic hypersphere Cthat is, a tube over a hyperplane
Pn-lC),

CA2) a tube over a totally geodesic PleC Cl~k~n-2),

CB) a tube over a complex quadric Q_h
CC) a tube over PlCXPC_D!2C and nC~5) is odd,
CD) a tube over a complex Grassmann G2,sC and n=9,
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(E) a tube over a Hermitian symmetric space 80(10)/ U(5) and n

=15.

In particular. real hypersurfaces of type Ah A 2 or B of PnC have
been studied by many authors (for example, [2J, [3J, [6J, [8J, [9J,
[12J, [l3J and so on).

On the other hand, Berndt [lJ showed recently that all real hyper­
surfaces with constant principal curvatures a complex hyperbolic space
HnC are realized as the tubes over constant radius over certain sub­
manifolds. Namely, he proved the following.

THEOREM B. Let M be a real hypersurface with constant principal
curvatures of HnC, on which the structure vector ~ is principal. Then
M is locally congruent to one of the following:

(Ao) a self-tube, that is, a horosphere,
(AI) a geodesic hypersphere or a tube over a hyperplane Hn-IC,
(AJ a tube over a totally geodesic HnC (l~k~n-2),

(B) a tube over a totally real hyperbolic space HnR.

Real hypersurfaces of type Ao, Ah A 2 and B of HnC have also been
investigated by some authors (for example, [3J, [4J, [10J, [l1J, [13J
and so on).

In particular, the shape operator A of the real hypersurface M of
Mn(c) , C*O, is said to be 1j-parallel, if it satisfies

g(VxA(Y), Z)=O for any X, Y and Z in e,
where ~l. denotes the orthogonal complement of the tangent bundle
T M with respect to ~. As the characterization of homogeneous real
hypersurfaces of type Ah A 2 or B in PnC and real hypersurfaces of
HnC, Kimura and Maeda [8J and Suh [13J proved recently the
following

THEOREM C. Let M be a real hypersurface of Mn(c), c*O. Then
the shape operator is 1j-parallel and the structure vector ~ is principal
if and only if M is locally congruent to one of homogeneous hypersurfaces
of type Ah A 2 or B of P nC or real hypersurfaces of type A o, Ah A 2 or
B of HnC.

The purpose of this paper IS to give a characterization of real
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hypersurfaces of type C, D or E of PaC. In § 1 the theory of real
hypersurfaces of a complex space form is recalled and in § 2 the
property of the operator P f defined by AZ-fA is analyzed, where f
is a smooth function. As an application of properties obtained in § 2
a generalization of Theorem C is in § 3 proved. In § 4 another
characterization of real homogeneous hypersurfaces of type AI. A z .or
B in PaC or real hypersurfaces of type Ao, AI. Az or B of H llC is
given. In the last section, we treat with the characterization of real
hypersurfaces of type C, D or E.

1. Preliminaries

We begin with recalling basic properties of real hypersurfaces of a
complex space form. Let M be a. real hypersurface of an n(~2) dim­
ensional complex space form Ma(e) of constant holomorphic curvature
e( *0) and let C be a unit normal field on a neighborhood of a point
:x in M. We denote by J an almost complex structure of MaCe). For
a local vector field X on a neighborhood of :x in M, the transforma­
tions of X and C under J can be represented as

JX=tPX+1J(X)~, JC=-~,

where tP defines a skew-symmetric transformation on the tangent bundle
TM of M, while 1J and ~ denote a I-form and a vector field on a
neighborhood of :x in M, respectively. Moreover, it is seen that g(~,
X)=1J(X), where g denotes the induced Riemannian metric on M.
By properties of the almost complex structure J, the set (tP,~, 1J, g) of
tensors satisfies then

(1.1) tPz=-I+1J®~, tP~=O, 1JCtPX) =0, 1J(~)=1,

where I denotes the identity transformation. Accordingly, the set is
an almost contact metric structure. Furthermore the covariant derivat­
ives of the structure tensors are given by

(1.2) P"xtP(Y)=1J(Y)AX-g(AX, Y)~, Vx~=tPAX,

where P" is the Riemannian connection of g and A denotes the shape
operator with respect to C on M.

Since the ambient space is of constant holomorphic curvature e, the
equations of Gauss and Codazzi are respectively given as follows:

(1. 3) R(X, Y)Z=e {g(Y, Z)X-g(X, Z)Y
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+g(~Y, Z)~X-g(~X,Z)~Y-2g(~X,Y)~Z} /4
+g(AY, Z)AX-g(AX, Z)AY,

(1.4) 17xA(Y)-p'yA(X)=c{7J(X)~Y-7J(Y)~X-2g(~X,Y)~} /4,
where R denotes the Riemannian curvature tensor of M and P'xA is
the covariant derivative of the shape operetor A with respect to X.

The Ricci tensor S' of M is a tensor of type (0,2) given by
S' (X, Y) =tr {Z~R(Z,X) Y}. But it may be also regarded as the tensor
of type (1,1) and denoted by S : TM~TM ; it satisfies S'(X, Y)=
g(SX, Y). By the Gauss equation, (1.1) and (1. 2) the Ricci tensor
S is given by

(1. 5) S=c{(2n+l)I-37J0~}14+hA-A2,
where h is the trace of the shape operator A. The covariant derivative
of S is also given by

(1. 6) P'xS(Y)=-3c{g(~AX,Y)~+7J(Y)~AX}14
+dh(X)AY+(hI-A)P'xA(Y)-P'xA(AY).

Now, some fundamental properties about the structure vector ~ are
stated here for later use. First of all, we have the following fact,
which is proved by Maeda [8J and Ki and Suh [4J, according as c>°and c<O.

PROPOSITION D. Let M be a real hypersurface of M,,(c) , c:;i:O. If
the structure vector ~ is principal, then the corresponding principal
curvature a is locally constant.

In the sequel, assume that the structure vector ~ is principal and
denote by a the corresponding principal curvature. Namely, A~=a~

is assumed. It follows from (1. 4) that we have
(1. 7) 2A~A=c~/2+a(A~+~A)

and therefore, if AX=AX for any vector field X, then we have
(1. 8) (2).-a)A~X=(a).+cI2)~X.

Accordingly, it turns out that in the case where a2+c:;i:O, ~X is also
a principal vector with principal curvature f.l=(aA+cI2)/(2).-a).
namely, we have

(1. 9) 2).-a:;i:O,
A~X=f.l~X, f.l=(af.l+c/2)/(2A-a).

On the other hand, for any principal curvature). we find
(1.10) dAa)=O
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be regarded as smooth functions, unless otherwise
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by the Codazzi equation (1.4) and Proposition D. In fact, the Codazzi
equation gives J7xA(~)-J7eA(X)=-cif>X/4for any X orthogonal to
~. Accordingly, for any principal vector X in e with principal
curvature i/., we have g(J7xA(e)-J7eA(X), X)=(a-i/.)g(J7x~,X)+
di/.(X)g(X, X), which implies that di/.(X)=O, because of (1. 2). This
is due to Kimura and Maeda [8J.

From the Codazzi equation (1. 4) it follows that the restriction Ao
of the shape operator to the orthogonal complement e satisfies g(J7x
Ao(Y), Z)=g(J7y A o(X), Z). Then A o is called a Coda:;:,:;:,i tensor of
type (1,1). For this Codazzi tensor, we define a subset M o of M
consisting of points x so that there exists a neighborhood Ux of x such
that the multiplicity of each principal curvature is constant on Ux'

Then it is seen that M o is the open and dense subset of M. Given
a point x in M and an eigenvalue i/. of A o, let Ax(i/.) in ~xl.cTxM

be a corresponding eigenspace of A o• In every connected component
of the open and dense subset M o the principal curvatures of Ao form
mutually distinct smooth eigenvalue functions and for such a function
i/., the assignment x-+Ax(il.(x)) defines a smooth eigenspace distribution.
Thus the orthogonal complement ~l. of the tangent bundle TM can be
decomposed as

(1.11)
on a connected
curvatures may
provided.

It is easily seen that in the case where a2+c*0, we get if>A(i/.)=
A(u) and in the case where a2+c=0, we have

(1.12) tt=a/2,
provided that 2i/.-a*0.

2. Operators

Let M be a real hypersurface of an n-dimensional complex space
form M,,(c), c*O, and assume that the structure vector ~ is principal.
An operator Pf is defined by P f =A2-fA for some smooth functionf
which is called the operator determined by the smooth function. In this
section we are concerned with fundamental properties of this operator.
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At any point x of M, PI: T:xM~T:xM is the self-adjoint linear trans­
formation and ~ is the eigenvector of PI associated with the eigenvalue
f3o=a2- fa, because ~ is principal. Since the restriction of PI to the
orthogonal complement ~.l is also self-adjoint, e can be orthogonally
decomposed as

(2.1) e=p1(f31XBP1(f32XB···(JjPI (f3q) ,
on every connected component of the open and dense subset M oof M,
where Pl(f3r) denotes an eigenspace distribution of PI corresponding
to the eigenvalue f3r (l~r~q). Taking account of the definition of
PI' we see that for any index r there exist indices a and b (l~a,

b~p) such that
(2.2) PI (f3r)=AOa) or PI (f3r)=ACAa)(JjAOb).

Because of qSAO)=A(,u), the restriction of PI to the eigenspace PI
(f3r) , namely, the transformation qSl P1(f3r) : P1(f3r)~P1(f3.) is_ bijec­
tive. In every connected component of M o the eigenvalue f3 of PI is
smooth and we suppose that qSP1(f3)=P1(11). Then P1(f3) and P1(fJ')
are said to be ¢r-related.

LEMMA 2. 1. If the eigenspace AO) is contained in P1(f3) and if
P1(f3) is ¢r-invariant, then A depends on c, a and f.

Proof. For any X in ACA), the vector qSX belongs to PI (f3) ,
because it is ¢r-invariant. Furthermore A and f3 satisfy the following
relationship:

(2.3) ),2-fA=f3.
Without loss of generality, we may suppose that a2+c*0 or a2+c=0,
A*a/2. The equation (1. 9) gives AqSX=,uX and ,u=(aA+c/2)/(U
-a), and therefore we have

(2.4) ,u2-f.u=f3.
From (2.3) and (2.4) it follows that we have (A-,u)O+,u-f)=O.
Accordingly, the following equation is derived from the simple calcu­
lation:

(2.5) 02_aA - c/4) {A2-fA+(c+2af)/4} =0.
This completes the proof.

The operator PI is said to be 1j-parallel, if it satisfies gel?'x PIeY),
Z)=O for any X, Y and Z orthogonal to ~.
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LEMMA 2. 2. Let P f be the operator determined by a smooth fum:tion
f. If Pf is 1j-parallel and if f depends only on prim:ipal curvatures,
then all eigenvvalues of Pf are constant.

Proof. For a unit vector Y in PfCfi) we have PY=f3Y, which
yields that f7xPf(Y)+Pff7xY=df3(X)Y+f3f7xY. From which together
with the fact that Y is unit it follows that we have

(2.6) g(f7xPf(Y), Y)=df3(X).
Since the operator Pf is 1j-parallel, it reduces to

(2.7) df3(X)=O for any X orthogonal to ~.

On the other hand, the equation (2.3) means that f3 depends only
upon all principal curvatures and hence it follows from (1. 10) that
we have df3(X) =0, which together with (2.6) implies that f3 is
constant.

LEMMA 2.3. Let Pf be the operator determined by the smooth
fum:tion f depending only on prim:ipal curvatures. If an operator P f
(f3) +ePf(f3') is 1j-parallel and if Pf(f3) and Pf(f3') are tf>-related,
then f3+e{3' is constant, e= +1.

Proof. The formula (1. 2) means that the structure tensor t/J is
7}-parallel, namely we have

(2.8) g(f7xt/J(Y), Z)=O
for any vectors X, Y and Z in e. Since the operator PfifJ-t/JPf is
1j-parallel, we have

g(f7xP f(t/JY), Z)-g(t/Jf7xPf(Y), Z)=O
by (2.8). Accordingly we have

(2.9) g(f7xPf(Y), Z)=g(f7xPf(t/JY), t/JZ),
because t/J is skew-symmetric. By the similar discussion to that of (2.
6), we have g(f7xPf(t/JY), t/JY)=d/3(X) for a unit vector Y, which
completes the proof.

3. Real hypersurfaces of type A and B

This section is concerned with a generalization of Theorem C due
to Kimura and Maeda [8J and Suh [13J. Let M be a real hypersurface
of M,,(c) , c*O. It is easily seen that if the structure vector ~ is
principal, the orthogonal complement ~l. is tf>-invariant and A-invari-
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ant. Since the structure tensor ,p is 1}-parallel by (1. 2), it is seen that
if t; is principal and if the shape operator A is 7)-parallel, then so is
the operator A,p+,pA. We prove here the following

THEOREM 3.1. Let M be a real hypersurface of p ..C. Then the
operator A,p+,pA is 7)-parallel and the structure vector t; is principal
if and only if M is locally congruent to one of homogeneous real hyper­
surfaces of type AI> A 2 and B.

REMARK 3.1. (1) Let M be a real hypersurface of type B of p ..C.
Then the shape operator A satisfies A,p+¢JA= k¢J, where k=-c/a is
constant, which means that A,p+,pA is 1}-parallel, because,p is 7)­
parallel.

(2) Suppose that A,p-,pA is 1}-parallel and t; is principal. Then
the fact that A is also 1}-parallel can be derived from the simple
algebraic calculation. In fact, by the supposition that A,p-,pA is 7)­
parallel we have

g(l7xA(¢JY), Z)-g(,pl7xA(Y), Z)=O
for any x, Y and Z in t;.L, and hence

(g(17xA(Y), ,pZ)= - g(17xA(Z), ¢J Y),
which shows that g(1TxA(Y), ,pZ) is symmetric with respect to X
and Y, because of the Codazzi equation (1. 4) and it is also skewsym­
metric with respect to Y and Z. This implies

g(17xA(Y), ¢JZ)=O for any X, Y and Z in t;.l,
which yields that A is 7)-parallel, because the orthogonal complement
t;.L is rjJ-invariant.

In order to prove Theorem 3. 1 we prepare for two lemmas. First
of all, we shall prove

LEMMA 3.2. Let M be a real hypersurface of M ..(c), c*O. If A¢J
+¢JA is lIparallel and if t; is principal, then all Principal curvatures
are constant.

Proof. Since A,p+¢JA is lIparallel, we have
g(l7x A(,pY), Z+g(t/JI7xA(Y), Z)=O

for any vector fields X, Y and Z in t;.L, because ,p is also lIparalleL
Hence it reduces to
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(3.1) g(l7xA(Y), Z)+g(l7xA(¢Y), ¢Z)=O.
For any unit vector field Y in AO) such that if> Y in A(,u) we get
g(l7x A(Y), Y)=g(l7x(AY)-Al7x Y, Y)=dA(X) and similarly g(l7xA
(¢Y), ¢Y)=d,u(X), from which together with above equatioa it
follows that we have dO+ ,u)(X)=0 for any vector field X in ';J..
By this property and the fact (1.10) that each principal curvature is
constant along the ';-direction, it is seen that A+,u is constant, say a.

Suppose that a2+c* 0. By (1. 9) the principal curvature ,u is given
by (aA+c/2)/(2A-a) and therefore the equation A+,u=a is reduced to

2A2-2aA+(c/2+aa)=0.
Since the principal curvature a is constant by Proposition D, it IS a
quadric equation with constant coefficients, which yields that A is
constant.

Next, suppose that a2+c=0. In this case it suffices to show the
property that a principal curvature A different from the value a/2 is
constant. Then (1.12) implies that ,u=a/2 and moreover the argument
in the above case can be applied in this situation. It means that A is
constant.

Let Dx be a subspace of the tangent space TxM at any point x
consisting of vectors Y in ';x.l which satisfy (A2+ aA+bI) Y=O for
some constants a and b, where I denotes the identity transformation.
On a connected component of M o a distribution D can be defined by
x-.Dx '

LEMMA 3.3. Let M be a real hypersurface of Mn(c), c*O. If the
constants a and b satisfy the condition a2*4b, then we have

g(l7xA(Y), Z)=O for any vector fields X, Y and Z in D.

Proof. Differentiating covariantly the equation (A2+ aA+bI) Y=O,
we get

(3.2) I7xA(AY)+Al7xA(Y)+al7xA(Y)+(A2+aA+bl)l7xY=0.
Taking account of the fact that A and A2 are both self-adjoint, we
have

(3.3) g(l7xA(AY)+AI7x A(Y)+al7xA(Y), Z)=O.
Since the distribution D is A-invariant, we can substitute AX into X
in (3.3) and we have
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g(VAxA(AY)+AVAXA(Y)+aVAXA(Y),Z)=O.
Since g(VxA(Y), Z) is symmetric with respect to X, Y and Z in ~L

by means of the Codazzi equation (1. 4), the first term of the above
equation can be deformed as follows:

g(VzA(AX), AY)=-g(AVzA(X)+aVzA(X), AY)
=g(VzA(X), aAY+bY)-ag(VzA(X), AY)
=bg(VzA(X) , Y),

where the definition of the distribution and (3.3) are used. It turns
out that we have 2bg(VxA(Y), Z)+ag(VyA(Z), AX)=O for any X,
Yand Z in D. Accordingly it is seen that g(VyA(Z), AX) is symm­
etric with respect to X, Y and Z, from which together with (3.3) it
follows that 2g(VxA(Y),AZ)+ag(VxA(Y),Z)=O. By the last two
equations we have

(a2-4b)g(VXA(Y), Z)=O
for any vector fields in D.

REMARK 3. 2. (1) In [l1J Montiel and Romero proved that in a
Lorentz hypersurface M1m of an anti-De Sitter space H 1m+1, if the
shape operator A satisfies a polynomial p(x)=x2-ax+1 for some
constant a such taht a2*4, then A is parallel. The proof of Lemma
3. 3 is essentially the similar method to that of thier result.

(2) In [13J Suh proves the following property: Let M be a real
hypersurface of Mn(c) , c*o. If the shape opertor A satisfies a poly­
nomial p(x)=x2+ax+b for some constants a and b such that a2*4b
and if ~ is principal, then A is 7j-parallel. Lemma 3.3 is a generali­
zation of Suh's result without the assumption that ~ is principal.

Now, we will here prove Theorem 3.1. We may consider, without
loss of generality, that the constant holomorphic curvature of the
ambient space PnC is equal to 4. Assume that A~+~A is 7j-parallel
and ~ is principal. By Lemma 3.2 all principal curvatures are constant.
According to Kimura's theorem [6J, the hypersurface is locally cong­
ruent to one of homogeneous real hypersurfaces of PnC. On the other
hand, due to Takagi's clasification theorem [14J of homogeneous real
hypersurfaces of PnC, they can be divided into six types A h A2, B,
C,D and E.

H M is of type Ah A2 or B, then it is seen by Kimura and Maeda's
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theorem [8J that the shape operator is 7)-parallel. As is remarked in
the first of this section, the operator AcP+ cPA is then 7)-parallel. So,
in order to prove Theorem 3. 1 it suffices to show that the case of
type C, D or E can not occur.

Suppoe that M is a homogeneous real hypersurface of type C, D or
E. Due to Takagi's table [14J, the hypersurface has distinct five
constant principal curvatures: say a=cot20, Al=cotO, f.ll=-tanO,
A2=cot(O-n-/4), f.l2=-tan(O-n-/4), O<O<n-/4. Let D1 and D2 be
distributions defined by D1=A(1)+A(,ul) and D2=A(2)+A(f.l2),
respectively. Then the vector field Y (resp. Z) belonging to D1 (resp.
D2) satisfies (A2-Aa-I) Y=O (resp. A2+4A/a-I)Z=0), which
implies that D1 and D2 are both A-invariant and <fi-invariant. Since
';.l can be orthogonally decomposed by ';.l=D1+D2, we have

(3.4) (AcP-cPA ) (AcP+ cPA -kcP) =0, k= -4/a,
of which the covariant derivationt gives rise to

(17AcP+ A17cP-17cPA -cP17A)(AcP+cPA -kcP)
+ (AcP-cPA )(17AcP+ AVcP+17cPA +cPVA -kVcP) =0.

Acting the above equation to any vector field Y in A (1) and taking
account of the inner product of it and any vector Z in A (A2), we
have

(2Al-k)g((17xAcP-cPVxA)(cPY), Z)
+ (,u2- A2)g((VxA cP+cPVxA )(Y), cPZ)=O,

because cP is 7}-parallel and, AcPY=A1Yand AcPZ=,u2Z,
Accordingly it is equivalent to

(f.l2- Al)g(.dx A(Y), Z)+(AI-A2)g(VxA(cPY), cPZ) =0,
because of k=A2+ f.l2. On the other hand, since A(Al) is <fi-invariant,
we can substitute cP Y into Y in the last equation. Thus we have

(3.5) (AI-A2)g(VXA (Y), cPZ)= (f.l2- Al)g(VXA (Z), cPY)
for YEA(Al) and ZEA(A2)' Similarly we have the following equati­
ons:

(3.6) (,ul-A2)g(17XA (Y), cPZ )=(f.l2-pl)g(flxA (Z), cPY),
YEA(Pl)' ZEA(A2),

(3.7) (Al-f.l2)g(17xA(Y), cPZ )=(A2-Al)g(17XA (Z), cPY)
YEA(Al), ZEA(P2),

(3.8) (,ul-f.l2)g(17xA (Y), cPZ )=(A2-,ul)g(17XA (Z), cPY)
Y E A(Pl), Z E ACf.t2).
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Suppose that g(PxA(D1), D2)=O for any vector field X in ~.L. Any
vector fields X, Yand Z are decomposed as X=X1+X2, Y= Y1 + Y2
and Z=Zl+Z2 such that X a, Y a and ZaEDa (a=l, 2). By the above
supposition we get g(PxA(Yb), ljJZc)=O provided that b*c, from
which together with Lemma 3. 3 it follows that we have

g(PxA(Y), ljJZ)=g(PX
1
A (Y2), ljJZ2)+g(Px2A (Y1), ljJZl)

=g(VY2A(X1), ljJZ2) + g(Py1A(X2) , ljJZl)
=0.

Thus the shape operator A must be 7}-parallel. By a theorem of Kimura
and Maeda [8J, A is not 7]-parallel in the hypersurface of type C, D
and E, which yields that there exist vector fields X in ~.l, Y in D1

and Z in D2 such that g(pxA(Y), ljJZ) *0. This means that without
loss of generality we may suppose that there are vector fields Y in
A(Al) and Z in A(A2) such that g(PxA(Y), ljJZ)*O. By (3.5) we
have

(,u2-Al)g(Vx(AljJ) YZ, )+(AI-A2)g(Px(ljJA) Y, Z)=O,
g(Vx(ljJA)Y,Z)*O, g(Vx(AljJ)Y,Z)*O.

Because of J.l2-Al *AI-A2' it enables us to show
g(Vx(AljJ+ljJA) Y, Z) *0,

which means that AljJ+ljJA is not 7}-parallel. It completes the proof.

REMARK 3. 3. In Theorem 3. 1 the assumption that ~ is principal
can not be omitted. In fact, in ruled hypersurfaces of PnC constructed
by Kimura [5J, the shape operator A is 7]-parallel and hence so is
AljJ+ ljJA, but ~ is not principal.

On the other hand, for a real hypersurface of HnC, Lemmas 3.2
and 3. 3 mean that Berndt's classification theorem can be applied.
Thus one finds the following

THEOREM 3.4. Let M be a real hypersurface of a complex hyperbolic
space HnC on which the structure vector field ~ is principal. Then the
operator AljJ+ljJA is 7]-parallel if and only if M is locally congruent
to one of real hypersurfaces with constant principal curvatures of HnC.

4. The Ricci tensor

Let M be a real hypersurface of Mn(c) , c*O. In contract with a
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theorem of Kimura and Maeda [8J for the 7)-parallel shae operator,
another characterization of real hypersurfaces of type AI> A 2 or B in
PaC or real hypersurfaces of type Ao"-'B of HaC is recently given by
Suh [13J, who proved that the shape operator is 1}-parallel if and
only if the Ricci tensor is 1}-parallel. On the other hand, Ki and Suh
[4J treated with real hypersurfaces satisfying the condition Sf/J+f/JS=
kIr/>, where kI is constant. This section is concerned with the general­
ization of these results.

THEOREM 4.1. Let M be a real hypersurface of PaC, n>3. Then
the operator Sr/>+f/JS is 7)-parallel and ~ is principal if and only if M
is locally congruent to one of homogeneous kypersurfaces of type AI> A 2

and B.

REMARK 4.1. (1) Let M be a real hypersurface of Mn(e) , e*O.
If it satisfies Sr/>+f/JS=kIr/>, where kI is constant, then Sr/J+"pS is 7)­
parallel.

(2) Let M be a real hypersurface of type B. Then it is easily seen
it satisfies Sr/>+f/JS=kIr/>, where kI is constant, because of Ar/J+if>A=kr/>,
where k=-c/a.

(3) U the shape operator A is 7)-parallel, then so is Sr/J+"pS. Acc­
odingly, real hypersurfaces of type Al and A 2 in PnG admit this
property, for example.

For any X, Y and Z in ~.l, the fact that the operator Sif>+"pS is
7)-parallel implies g(Vx(Sr/»Y, Z)+g(r/>VxS(Y), Z)=O and hence we
have

(4.1) g(VxS(Y), r/>Z)=g(VxS(Z), r/>Y).
Substituting r/> Y for Y in the above equation, one gets

(4.2) g(VxS(Y), Z)+g(VxS(r/>Y), r/>Z)=O.
Since the Riccic tensor S is expressed as S=c{(2n+1)I-37}0~} j4-P ,
where we put P=A2-hA and h=Tr A, the covaraint derivation is
given by VxS(Y)=-3cVx7)(Y)~/4-VxP(Y).Accordingly, (4.2) is
equivalent to

(4.3) g(VxP(Y), Z)+g(VxP(r/>Y), r/>Z)=O.
An eigenspace of P corresponding to an eigenvalue fi is denoted

by P(fl). Let M be a real hypersurface of M n(e) , e*O, whose Ricci
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tensor satisfies the condition SifJ+t/JS is 7)-parallel Then, by Lemma
2. 3 it is seen that if ~ is principal and if P(f3) and P(f3') are ¢J-rel­
ated, then f3+{1 is constant. Moreover, concerning with principal
curvatures, one finds

Lemma 4.2. Let M be a real hypersurface of M,.(c), c,*o, n~3.

If SifJ+ifJS is 7)-parallel and if ~ is principal, then all curvatures are
constant on M.

Proof. First we consider the case where a2+c,*0. For a principal
curvature A and eigenvalues f3 and fI such that A(A) C P(f3) and ifJP(f3)
=P(fJ'), we have

(4.4) ),2_hA=f3, p.2-hp.=fI,
where AifJX=p.ifJX for any X in AO). Eliminating the function h in
the second equation of (4.4) together with (1.9), we have

(4.5) 2a),4+(4.8' +C-2a2)),3- {2(f3+2f3')+3c/2} ail2

+ {a2(f3+fI)-cf3-c2/4}il+ca.8l2=0.
1£ we suppose that a '*0, then it is a quartic equation of il. In the
case where a=O, il satisfies the root of the cubic equation at a point
x such that 4.8'(x)+c'*0, otherwise it is seen that there are at
most two distinct principal curvatures, say il and p., different from a
and they satisfy il+lt=h. It enables us to give (n-2)h=0 and hence
principal curvatures are both constant by (4.4).

Let .81> "', f3q he eigenvalues of P. Since any principal curvature is
smooth on every connected component of the open and dense subset
Mo of M, the eigenvalues of P may he supposed to he smooth. Then,
for any f3, the eigenspace P(f3) is ¢J-invariant or there is another f3'
such that P(f3')=ifJP(f3)' Therefore we see

q q

~.L= 1:: (P(f3r)Ef)P(f3r'))EB 1:: P(f3r),
r=l r=2q+l

where P(f3r) and P(f3r') is ¢J-related for r~qo and P(f3r) is ifJ-invariant
for r>qo. Suppose that P(f3) is ¢J-invariant. Since f3 is equal to {I,
the remark before Lemma 4. 2 implies that f3 is constant, which means

/ that (4.5) is the quartic equation with constant coefficients and the
principal curvature ), is constant, from which it turns· out that h is
constant by (4.4). On the other hand, suppose that P(f3) and P({I)
Te ¢J-related and let il and It are principal curvatures satisfying (4.4).
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Then they satisfy the relationship:
(4.6) A2 +p.2-h(A+p.)=fi+fi',

from which together with the second equation of (1. 9) it follows that
we have

(4.7) 4A4 -4(a+h)A3 +2(a2+ha-2c)A2

+(ca-ch+4ba)A+(c2+2cha-4ba2)/4=0,
where b=fi+fi'. Consequently, if 2qo<q, then h is constant on M
and therefore all principal curvatures are also constant by (4.8). We
consider the case of 2qo=q. Then it suffices to show that h is constant.
Suppose that P(fi)=AO)EBA(A') O*A'). Then A2-hA=fi and A'2­
hA' =fi and hence we have A+A' =h. While it is seen that P(fi')=
A(p.)EBA(p.') , because PCfi) and P(fi') are ~related, and hence p.+f1.'
=h. On the other hand, since they are the roots of (4.7), the elem­
entary relation of the equation (4.7) gives rise to A+;('+p.+p.'=a+h
and hence h=a, which yields that A is constant on M by (4.7).
Next, suppose that P(fi)=AO) and there are not less than two sets
of the pair (PCfi), P(fi')), namely, q~4, where P(fi')=A(p.). Then
the number of distinct principal curvatures is at least four and the fact
shows that the equations (4. 5) and (4. 7) must be equivalent, from
which it follows that each coefficients can be compared. Thus we have
4fi' = -c-2ah and 2fi' = -a2-ah-3c/2, which implies a2+c=0, a
contradiction. It means that there is only a pair (P(fi), Pc,)) such
that PCfi)=AO) and P(fi')=A(p.). As the multiplicites of A and p.
are eqlfhL say m=n-l, we have h=a+mO+ p.), which implies

2m;(2-2(h-a)A+mc/2+a(h-a) =0,
2mp.2-2(h-a)p.+mc/2+a(h-a) =0.

Adding above two equations and taking account of (4.6), we get
2(n-2)(h-a)2+4(n-l)a(h-a)+ (n-l)2(2b+c) =0,

which yields that h is constant and so is A. Therefore all principal
curvatures are constant on the whole M.

In the case where a2+c=0, we may suppose that there is a principal
curvature A different from a/2. Then p.=a/2 and (4.6) is reduced to

(4.8) A2-hA+a2/4-ah/2-b=0.
This means that the number of principal curvatures different from a/2
and a is at most two, say Al and A2 with multiplicities nl and n2'
Then they satisfy Al+A2=h=nlAl+n2A2+(2n-nl-n2)a/2, which
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together with (4. 8) it follows that h is constant.
This concludes the proof.

We shall here prove Theorem 4. 1. Since Lemma 4. 2 shows that
all principal curvatures are constant and the structure vector field ~ is
principal, M is locally congruent to one of homogeneous real hyper­
surfaces of PnC according to Kimura's theorem [6J. On the other
hand, due to Takagi's classification theorem [14J of homogeneous real
hypersurfaces of PnC, M is of type AI> A 2, B, C, D and E.

In the case of type AI> A 2 or B, it is seen that shape operator is
7}-parallel and hence so is S¢J+¢JS. In order to prove this theorem we
shall show that a hypersurface of type C, D or E can not occur. Let
M be a real hypersurface of type C, D or E of PnC. Suppose that the
operator S¢J+¢JS is 7}-parallel. Then all principal curvatures different
from a are roots of the equation (x2-ax-c/4) (x2+cx/a-c/4) =0,
and hence the shape operator A satifies the equation (A¢J-¢JA)(A¢J+
¢JA-k¢J) =0, where k=-c/a, which is deformed as Q+¢JQifJ-(c+
a2)=O by (1. 7), where Q=Pk denotes the operator defined by A2­
kA. It is equivalent to

(4.9) QrjJ-rjJQ=O.

Accordingly the operator SrjJ+rjJS is expressed as (2n+1)crjJ/2+(!i-k)
ArjJ+(h+k)rjJA-2rjJA2. Since it is 7]-parallel, we have

{2(,u+o-')-h-k} g(P'xA(Y), rjJZ)+(h-k)g(P'xA(Z), rjJY)=O
for YEA(,u), AEA(o), ifJYEA(,u') and rjJZEA(o-'), in wl1ich we
can exchange Y and Z and we get

{2(,u+o-')-h-k} g(P'xA(Z), ifJY) + (h-k)g(P'xA(Y), rjJZ)=O.
Thus there exists a function F 1 depending only on principal curvatures,
which satisfies F1g(P'xA(Y), ifJZ)=O. Similarly, there is a function
F2 depending only on principal curvatures, which satisfies F2g(P'yA(X),
¢JZ)=O, where F1=f=F2, provided that A*,u. Thus we have g(P'xA
(Y), ¢JZ)=O for any XEAO), YEA(,u), O*,u) and any Z in ~.l.

Since it is easily seen that g(P'xA(X), Y)=O for any X, YEACA.)
and any Z in ~.l, it turns out that A is 7)-parallel, a contradiction.
Consequently, in the real hypersurface of type C, D or E the operator
SrjJ+rjJS is not 7}-parallel.

This concludes the proof.
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In the complex hyperbolic space, Berndt's classification theorem [1J
can be applied and the following theorem is verified by Lemmas 2. 3
and 4.2.

THEOREM 4.3. Let M be a real hypersurface of HnC, n;;;;3. Then
8ifJ+ifJ8 is 7j-parallel and ~ is principal if and only if M is locally
congruent to one of real hypersurfaces of type A o, AI> A z or B.

5. Hypersurfaces of type C, D or E

This section is devoted to the investigation of a characterization of
real hypersurfaces of type C, D or E in PnC. Let M be a real hyper­
surface of Mn(c) , c:;t:O, and assume that the structure vector ~ is
principal. Let Pf be an operator introduced in § 2, that is, P f=Az
-fA, where f is a smooth function. Then the subspace ~.L can be
orthogonally decomposed into ~.L=Pf(f31)+···+Pf(f3q), where P f (f3r)
denotes the eigenspace distribution of P f corresponding to the eigenvalue
f3r.

Now, it is proved by Suh [13J that the Ricci tensor is r;-parallel
if and only if M is locally congruent to one of real hypersurfaces of
type A1"-'B or Ao"-'B. On the other hand, Kimura [7J proved that
real hypersurfaces of PnC satisfiying the condition 8ifJ-ifJS =0 are
completely classified. First of all, we shall here prove the following

THEOREM 5.1. Let M be a real hypersurface with constant mean
curvature of Mn(c) , c::;tO, on which r; is principal. The Ricci tensor
8 is not 7j-parallel and 8ifJ-ifJ8 is 7j-parallel if and only if c is positive
and M is locally congruent to one of a tube of radius r over the follo­
wing Kaehler suhmanifolds:

(1) P1CXP(n-D/ZC, where o<r<n-/4, cot2 2r=1/(n-2) and n(;;;;5)
is odd,

(2) a complex Grassmann Gz, 5C, where 0<r<tr/4, cotZ2r=3/5 and
n=9,

(3) a Hermitian symmetric space 80(10) / U(5), where 0<r<tr/4,
cotZ2r=5/9 and n=15.

In order to verify Thererem 5. 1, the following lemma is prepared.
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LEMMA 5.2. Let M be a real hypersurface of Mn(c), c*o, on
which ~ is principal. For an operator P j=A2_kA, where k is constant,
if PjfjJ-fjJPj is 7j-parallel, then all principal curvatures are constant.

Proof. Suppose that a2+c*O. For a principal curvature -i and
eigenvalues f3 and f3' such that A(A)cPj(f3) and fjJP,.(f3)=Pj(f3'), we
have (4.5). By Lemma 2.3, f3-f3' is constant, say lI, and hence
we have -i2_f.I.2_kO-f.I.)=l/, which is equivalent to

(5.1) 4-i4 -4(a+k).P+(Gak-4b').:l2
+ {(4b' -c)a+k(c-2a2)}-i-(c2+2cka+4h'a2)/4=O.

Since k is constant, (5. 1) is the quartic equation with constant coeffi­
cients and A is constant. It turns out that all principal curvatures are
constant on the whole M.

It is easily seen that it holds in the case where a2+c=O.

Consequently, using the classification theorems due to Takagi [14J,
Kimura [5J and Berndt [lJ, M is locally congruent to one of real
hypersurfaces of type A1'"'-'E or Ao"-'B, according as c>O or c<o.
The characterization theorems of the 1j-parallel shape operator by
Kimura and Maeda [8J and Suh [13J yield that A is 7j-parallel if and
only if M is of type A1"-'B or Ao"-'B according as c>O or c<o. This
shows that if P j is not 7j-parallel, then these hypersurfaces can not
occur, because if A is 7j-parallel, then so is Pj. Thus one finds the
following

PROPOSITION 5.3. Let M be a real hypersurface of Mn(c), c=t=O, on
which ~ is principal. If the operator P j=A2_kA is not 7j-parallel,
where k is constant, and if PllfjJ-fjJPj is 7j-parallel, then c is positive
and M is locally congruent to one of real hypersurfaces C, D and E.

From now on, we shall investigate the operator Pj=Q in the real
hypersurface of type C, D or E in PnC, where k= -cia is constant.
According to the classification theorem due to Takagi [14J, the hyper­
surface has five distinct principal curvatures and furthermore A satisfies
the equation (AfjJ-fjJA)(AfjJ+fjJA-kfjJ)=O, k=-cla, which is deformed
as Q+fjJQfjJ=O on ~J. by (1.7). It is equivalent to

(5. 2) QfjJ-fjJQ=O on ~J..

Taking account of the above property, the following characterization
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of real hypersurfaces of type C, D and E can be asserted.

THEOREM 5.4. Let M be a real hypersurface of MaCe), C=FO, on
which the structure vector ~ is Principal. Then, for the operator Q=
A2_kA, where k=-c/a is constant, Q is not 7j-parallel and QtP-tjJQ
is 7j-parallel if and only if c is positive and M is locally congruent to
one of homogeneous real hypersurfaces of type C, D or E.

Proof. In order to prove Theorem 5. 4, it suffices to verify the
"if" part, that is, to show that the operator Q in the real hypersur­
face of type C, D and E is not 7)-parallel. Suppose that M be a real
hypersurface of type C, D or E and P1=A2_kA is 7j-parallel, where
k is constant. Since we have YxPi(Y)=P'xACAY)+AJi"xA(Y)-kIi"xA
(Y), the following equation

gCP'XPi(Y), Z)=(.u+lT-k)gCP'xACY), tPZ)=O
is derived for any XEAO), YEA(.u) and ZEAClT). Exchanging X
and Y in the above equation, we get

g(P'yPi(X), tPZ)=O+lT-k)g(P'yACX), Z)=O.
Combining together with above two equations, we have (A-Jl)gCP'xA
(Y),Z)=O, from which it follows that g(P'xA(Y),Z)=O for any X
EA(A), YEACJl), J..=FJl' and any Z. While it is easily seen that it
holds for any X, Y E A(J..) and any Z. Thus we have g(P'xA(Y), Z)
=0 for any X, Y and Z and hence A is 7j-parallel. This is a contra­
diction to the result of Kimura and Maeda [8J. Thus Pi is not 7j-pa­
rallel.

It completes the proof.

As a direct consequence of Thoerem 5. 4, we can prove Theorem
5.l.

The careful discussion of the proof of Theorem 5. 4 can derive the
slight generalization of Sub's theorem.

THEOREM 5.5. Let M be a real h)·persurface of MaCe), C=FO, on
which ~ is principal. For an operator Pf =A2-fP, where f is a smooth
function depending only on principal curvatures, Pf is 7j-parallel if
and only if M is locally congruent to one of real hypersurfaces of type
AII'VB or of type Ao-B, according as c>O or c<O.
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The sketch of the proof. By Lemma 2. 2 all eigenvalues of the operator
Pf are constant. Suppose a2+c*O. For any principal curvatures A
and p. such that AO)EPf(/J) and A(P.)EepPf(fJ)=Pf(/J'), we have
(4.6), from which it follows that any principal curvature A is constant.
It is easy that the fact holds in the case where a2+c=O.

The conclusion is complete by means of the proof of Theorem 5. 4.
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