Fixed Point Theorems for Multivalued Mappings in Banach Spaces

  • 투고 : 1990.06.28
  • 발행 : 1990.06.30

초록

Let K be a nonempty weakly compact convex subset of a Banach space X and T : K ${\rightarrow}$ C(X) a nonexpansive mapping satisfying $P_T(x){\cap}clI_K(x){\neq}{\emptyset}$. We first show that if I - T is semiconvex type then T has a fixed point. Also we obtain the same result without the condition that I - T is semiconvex type in a Banach space satisfying Opial's condition. Lastly we extend the result of [5] to the case, that T is an 1-set contraction mapping.

키워드