Vertical Lift of Vector Fields to the Frame Bundle

A.K. Mishra
Banaras Hindu University, Varanasi-221005, India

R.N. Singh
Banaras Hindu University, Varanasi-221005, India

ABSTRACT. Let M be a differentiable manifold, TM its tangent bundle and FM its frame bundle. The theory of complete lifts and Horizontal lifts to FM of vector fields on M ahs been studied by many authors. In this paper, vertical lifts of functions vector fields and 1-forms on M to FM are studied.

0. Introduction

Let M be an n-dimensional C^{∞} manifold and FM its frame bundle. The differential geometry of FM was studied by T. Okubo [9, 10], Terrier [3], Mok [1, 2], Cordero [4, 5]. In [2], Mok introduced a Riemannian metric on the frame bundle of a Riemannian manifold. This metric is similar to that defined by Sasaki [8] for the tangent bundle TM of a smooth manifold M. In 1977, Mok [1] introduced the complete lifts of vector fields, different types of tensor fields and linear connections on M to FM. Moreover, in 1984, Cordero and Manual De Leon [4, 5] introduced the Horizontal ifrts of vectors fields, tensor fields and connections on M to FM. One of the present authors [6, 7] has studied vector fields and lifts of different types of tensor fields on Complex tangent bundle TM_{2n} of a Complex manifold M_{2n} . The main purpose of the present paper is to study the vertical lifts of function, vector field and 1-form of M to FM.

1. Preliminaries

In this section, we summarize all the basic definitions and results that are used later. Indices $a, b, c, \ldots, i, j, k, \ldots, \alpha, \beta, \gamma, \ldots$ have range in $\{1, \ldots, n\}$. Summation over repeated indices is always implied. Entries of matrices are written as A_j^i , A_{ij} , or A^{ij} , and in all cases, i is the row index while j is the column index. R^n is the euclidean n-space G1(n, R) the general linear group and G1(n, R) the Lie algebra of all $n \times n$ square matrices. Coordinate systems in M are denoted by (U, x^i) , where U is the coordinate neighbourhood and x^i are the coordinate functions. Components in (U, x^i) of geometric objects on M will be referred to simply as components in U, or just components. We denote the partial differentiation $\partial/\partial x^i$ by ∂_i , and Lie derivative by \mathfrak{L}_x .

Let T_xM be the tangent space at a point $x \in M$, $(X_\alpha) = (X_1, \ldots, X_n)$ a linear frame at x and FM the frame bundle over M, that is the set of all frames at all points of M. Let $\pi: FM \to M$ be the Canonical parjection of FM on to M; for the coordinate system (U, x^i) in M'_i , we put $FU = \pi^{-1}U$. A frame (X_α) at x can be expressed uniquely in the form $X_\alpha = X^i_\alpha(\partial/\partial x^i)_x$. The induced coordinate system in FM is $\{FU, (x^i, X^i_\alpha)\}$. The matrix $[X^i_\alpha]$ is non-singular and its inverse will be written as $[X^i_\alpha]$.

Suppose (U, x^i) and $(U', x^{i'})$ are two coordinate systems in M and let $\{FU, (x^i; x^i_\alpha)\}$ and $\{FU', (x^{i'}; X^{i'}_\alpha)\}$ be the induced coordinate system in FM; by a routine calculation, one easily gets

$$\frac{\partial}{\partial x^{i}} = P_{i}^{i'} \frac{\partial}{\partial x^{i'}} + P_{ij}^{i'} X_{\alpha}^{i} \frac{\partial}{\partial X_{\alpha}^{i'}}, \quad \frac{\partial}{\partial X_{\alpha}^{i}} = P_{i}^{i'} \delta_{\alpha}^{\beta} \frac{\partial}{\partial X_{\beta}^{i'}}$$

on $FU \cap FU'$, where δ^{β}_{α} is the Kronecker delta and

$$P_i^{i'} = \frac{\partial x^{i'}}{\partial x^i}; \quad P_{ij}^{i'} = \frac{\partial^2 x^{i'}}{\partial x^i \partial x^j}$$

with a given linear connection Γ on M, we can define two sets of global 1-forms on FM, namely θ^{γ} and ω_{σ}^{ρ} . Their expression on FU or

$$\theta^{\gamma} = X_i^{\gamma} dx^i$$

$$\omega_{\sigma}^{\rho} = X_h^{\rho} (\Gamma_{ji}^h X_{\sigma}^i dx^j + dX_{\sigma}^h)$$

and these $n + n^2$ global 1-forms are linearly independent every where. Actually, $\theta = (\theta^{\gamma})$ is the Canonical 1-forms of FM and $\omega = (\omega_{\sigma}^{\rho})$ is the connection form of Γ . Let E_{α} , E_{λ}^{μ} be the $n + n^2$ global vector fields on FM dual to θ^{γ} , ω_{σ}^{ρ} ; they span respectively the horizontal and vertical distribution on FM and their expression on FU are

$$\begin{split} E_{\alpha} &= X_{\alpha}^{i} \left(\frac{\partial}{\partial x^{i}} - \Gamma_{ik}^{j} X_{\beta}^{k} \frac{\partial}{\partial x_{\beta}^{i}} \right) \\ E_{\lambda}^{\mu} &= X_{\lambda}^{i} \frac{\partial}{\partial X_{\mu}^{i}}. \end{split}$$

2. Vertical Lifts

2.1 Vertical Lifts of Functions

If ϕ is a function in M, we write ϕ^V for the function in FM obtained by forming the composition of $\pi: FM \to M$ and $\phi: M \to R$, so that

$$\phi^V = \phi \circ \pi$$

Thus, if a point $x \in FU$ has induced coordinates (x^i, x^i_{α}) , the

(2.2)
$$\phi^{V}(x) = \phi^{V}(x, X_{\alpha}) = \phi \cdot \pi(x) = \phi(x)$$

Thus the value of $\phi^V(x)$ is constant along each frame T_xM and equal to the value $\phi^V(x)$ is constant along each frame T_xM and equal to the value $\phi(x)$ of ϕ at the point $x = \pi(x) \in M$. We call ϕ^V the vertical lift of the function ϕ . Thus we have, from (2.2),

$$(\psi\phi)^V = (\psi)^V(\phi)^V$$

for any ψ , ϕ on M. We now see from (2.2) that the mapping $\phi \to \phi^V$ determines a linear isomorphism of M into FM with respect to constant coefficients.

If τ is a 1-form in M, it is regarded, in a natural way, as a function in FM, which we denote by $\gamma \tau$. If τ has the local expression $\tau = \tau_i dx^i$ in a coordinate neighbourhood U of M, then $\gamma \tau$ has the local expression

$$(2.4) \gamma \tau = \tau_i X_{\alpha}^i$$

with respect to the induced coordinates in FU.

Thus if ϕ is a function in M, then $\gamma(d\phi)$ high the local expression

$$\gamma(d\phi) = \partial i X_{\alpha}^{i}$$

with respect to the induced coordinates in FU.

Proposition 2.1. Let X and Y be vector fields in FM such that

$$X(\gamma(d\phi) = Y(\gamma(d\phi)),$$

for an arbitrary function $\dot{\phi}$ in M. Then X = Y.

Proof: If $X(\gamma(d\phi)) = 0$ for any function ϕ in M_i then X = 0. If $X^i_{X^i}$ are components of X with respect to the induced coordinates (x^i, X^i_{α}) in FU. Then we have from $X(\gamma(d\phi)) = 0$

$$X^{j}(\partial_{i}\partial_{i}\phi)X^{i}_{\alpha}+X^{j}\partial_{i}\phi=0$$

If this holds for any $\phi \in M$, $\partial_j \phi$ and $\partial_j \partial_i \phi$ taking any preassigned values at a fixed point, we have

(2.6)
$$X^{j}X_{\alpha}^{i} + X^{i}X_{\alpha}^{j} = 0, \qquad X_{j'} = 0$$

Suppose $X_{\alpha}^{i} \neq 0$ and assume that $X_{\alpha}^{i} \neq 0$. Then putting i = 1 in the first equation of (2.6), we have $X^{j}X_{\alpha}^{1} + X^{1}X_{\alpha}^{j} = 0$, from which $X^{j} = \beta X_{\alpha}^{j}$ for a certain function β . Substituting this into the first equation of (2.6), we find $2\beta X_{\alpha}^{j}X_{\alpha}^{i} = 0$, from which, putting i = j = 1, we have $\beta = 0$, i.e., $X^{i} = 0$. Thus we see that the vector field X is zero at a point such that $X_{\alpha}^{i} \neq 0$, that is, in FM - M. But the vector field X is continuous at every point of FM. So, we have X = 0 in FM. Thus proposition (2.1) is proved.

2.2 Vertical Lifts of Vector Fields

Let $x \in FM$ be such that $X\phi^V = 0$ for all $\phi \in M$. Then we say that X is a vertical vector field. Let $\binom{X^{i'}}{X^{i}}$ be components of X with respect to the induced coordinates. The, from $X\phi^V = 0$, we have $X^i\partial_i\phi = 0$ for all $\phi \in M$, from which $X^i = 0$, i.e.,

$$\begin{pmatrix} X^{i} \\ X^{i'} \end{pmatrix} = \begin{pmatrix} 0 \\ X^{i'} \end{pmatrix}.$$

Thus X is vertical if, and only if, its components in FU satisfy (2.7). Suppose that X is a vector field in M. We define a vector field X^V in FM by

$$(2.8) X^{V}(\gamma \tau) = (\tau(X))^{V},$$

being an arbitrary 1-form in M. We call X^V the vertical lift of X in M to FM. If X^i and τ_i are respectively components of X and τ with respect to the local coordinates in U, and if $\binom{X^i}{X^{i'}}$ are components of X^V with respect to the induced coordinates in FU, then we have from (2.8),

$$X^{j}(\partial_{j}\tau_{i})X_{\alpha}^{i} + X^{j'}\tau_{j} = \tau_{i}X^{i}$$

for any τ_i , from which $X^i = 0$, $X^{i'} = X^i$. Thus the vertical lift X^V of X with components X^i in M to FM has components

$$(2.9) X^{V} = \begin{pmatrix} 0 \\ X^{i} \end{pmatrix}$$

with respect to the induced coordinates in FM. Thus the vertical lift X^V of X to FM is a vertical vector field in FM. Consequently, we have by the definition of X^V .

$$(2.10) X^{\boldsymbol{V}} \phi^{\boldsymbol{V}} = 0$$

for any vector field X and ay differentiable function ϕ on M. Using (2.8) or (2.9) and taking account of (2.2), we can easily verify that

$$(2.11) (X+Y)^V = X^V + Y^V$$

$$(2.12) \qquad (\phi X)^V = \phi^V X^V$$

for any vector fields X, Y and differentiable function ϕ on M. We now have

Proposition 2.2. For the Lie product $[X^V, Y^V]$ of X^V and Y^V

$$[X^{V}, Y^{V}] = 0$$

holds, X and Y being arbitrary element of M.

Proof: Let τ be an arbitrary elements of 1-form in M. Then, taking account of (2.8) and (2.10), we have

$$[X^{V}, Y^{V}](\gamma \tau) = X^{V} Y^{V}(\gamma \tau) - Y^{V} X^{V}(\gamma \tau)$$

= $X^{V} (\tau(Y))^{V} - Y^{V} (\tau(X))^{V} = 0$

and consequently $[X^V, Y^V] = 0$ by virtue of proposition (2.1). Thus proposition (2.2) is proved.

We see from (2.9) that the mapping $X \to X^V$ determines a linear isomorphism of M into FM with respect to constant coefficients. From (2.9), we find in each open set FU

(2.14)
$$\left(\frac{\partial}{\partial x^i}\right)^V = (X^i_{\alpha})^V$$

with respect to the induced coordinates in FM.

2.3 Vertical Lifts o 1-Froms

Let τ be a 1-form on M, the 1-form $\tau^V = \pi^* \tau$ on FM is completely defined by the following.

 τ^V is the unique 1-form on FM which verilies

(2.15)
$$\tau^{V}(X^{C}) = (\tau(X))^{V}$$

for any vector field X on M.

If $\tau = \tau_i dx^i$ is the local expression in U of τ , then $\tau^V = \tau_i dx^i$ in FU with respect to the global coframe θ^{γ} and ω_{σ}^{ρ} in FU. Their expression on FU are

$$\theta^{\gamma} = X_i^{\gamma} dx^i$$

$$\omega_{\sigma}^{\rho} = X_h^{\rho} (\Gamma_{ii}^h X^i dx^j + dX_{\sigma}^h)$$

one has $\tau^V = X^i_{\alpha} \tau_i \theta^{\alpha}$.

The vertical lift τ^V of τ with local expression $\tau = \tau_i dx^i$ has components of the form

$$(2.16) V: (\tau_i, 0),$$

with respect to the induced coordinates in FM. Thus the vertical lift τ^V of τ to FM is a vertical 1-form in FM.

Consequently, we have from (2.9) and (2.16)

$$\tau^{V}(X^{V}) = 0$$

for any τ on M. Using (2.16) and taking account of (2.2), we can easily verify that

$$(2.18) \qquad (\tau + \eta)^V = \tau^V + \eta^V$$

$$(2.19) \qquad (\phi \tau)^{V} = \phi^{V} \tau^{V}$$

for any τ , η on M.

We see from (2.16) that the mapping $\tau \to \tau^V$ determines a linear isomorphism of M into FM with respect to constant coefficients, and that in each open set FU the formula

$$(2.20) (dx^i)^V = dx^i$$

holds with respect to the induced coordinates.

References

- 1. K.P. Mok, Complete lifts of tensor fields and connections to the frame bundle, Proc. London Math. Soc. 32 (1979), 72-88.
- 2. _____, On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew Math. 302 (1979), 16-31.
- 3. J.M. Terrier, Linear connection and almost complex structures, Proc. Amer. Math. Soc. 49 (1975), 59-65.

- 4. L.A. Cordero-M.De Leon, Lifts of tensor fields to the frame bundle, Rend. Circ. Math. Palermo 32 (1983), 236-271.
- 5. _____, Horizontal lift of connections to the frame bundle, Boll. Un. Mat. Ital. B(6) 3 (1984), 223-240.
- 6. R.N. Singh, On the complex tangent bundle, Proc. Math. Soc. 2 (1986), 122-132.
- 7. _____, Horizontal lifts of tensor fiels to the complex tangent bundle, Accepted for presentation in the VI International Colloquium on differential Geometry at Santiago de Compostela (SPAIN),.
- 8. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.
- 9. T. Okubo, On the differential geometry of fram bundles $F(X_n)$, n=2m, Mem. Defense Acad. 5 (1965), 1-17.
- 10. ____, On the differential geometry of frame bundles, Ann. Mat. Pure Appl. 72 (1966), 29-44.