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A Generalization of Abel’s Theorem on Power Series
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ABSTRACT. There are three objectives of this paper. First, we present an elegant and
simple generalization of Abel's theorem (i.e. the Abel summability (on the unit disk of
the euclidean plane) is regular). Second, we consider the definition of Abel sun.mability
through lim,_,,-(1 — z) Z::’ anz™ which immediately has clear connexctions with
Cesaro summability and Cesaro sums ;_lﬁ- }:;:: o @k This approach examplifies some
simple aspects of so-called Tauberian theorems of divergent series. Third, we present
the applications of the previous results to find the limits of transition probabilities of
homogeneous Markov chain. Finally, we explain why the original Abel's theorem which
looks obvious is difficult to be proved, and can not be proved analytically.

A series of real numbers EI:; a, is said to converge to a in the Abel’s sense if

where the limit is taken from the left of 1.
In this case, we denote

Abel summability of infinite series is regular, l.e. the convergence of the series implies
400 + 00
(A) n=00n = ano an.

Lemma 1. For any power series z:_:% en(z — zp)" of a complez variable, where 20 € C
is fized, then there is a largest 0 < R < 400, which is called the radius of convergence of
the given power series, such that the power series converges on |z — zo] < R (where the
convergence is absolute and uniform on any closed disk in |z — zg] < R) and represents
an analytic function on |z — z5] < R, diverges on |z — 20} > R, and no conclusion is on
jz— 2zl = R.

Theorem 1(Generalized Abel’s theorem). If a, € R for any n € Z + U{0} and
0 < R < 4-00 such that Z::o a, R™ converges, then

+ 00 400
lim Eanx" = ZanR"
R
n=0 n=0

(cf. Theorem 45 on p.80,[3], where the assumplion that the radivs of convergence of the

power series 3120 anz™ is R is redundant) and S33% a,2" has radius of convergence> R.
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The case R = 1 is the Abel’s theorem (Theorem 1.4.3(i),[4]). Conversely, if a, > 0 for
any n € Z + U{0}, and 0 < R < 400 with lim,_, - E::(’) 8,2" = a < +00, then

400
Z e, R" = a.

n=0

(cf. Theorem 1.4.3(ii),[4]).

Proof: Let b, = a,R" for any n € Z+U{0}, then "7 b, converges and (4) .} b,
S b, e

+00 +o0
lim Y anz” = lim ZanR" )" = lim Zb z" Zb,,-Za,,R"
=R n=0 L it n=0 n=0 n=0

Since Z::B by converges, limp_ 4o by = 0 implies that there is an ¢ < K < +o0o0 with
|ba] € K for any n€Z+U{0}

For any |z} < 1, 7% bn2?] < ETFS |20 = -—_’—(rz-r < 400 and Y72 b, 2" converges.
If jz] < R, then [H[ < land S8 bain = 372 an2” converges, ie. the radius of
convergence of "% a, 2" is > R.

If R = 400 in Theorem 1, then a, = 0 for any n € Z,. We assume 0 - (£oo) = 0.
Theorem 1 has a partial, complex case: If ¢, € Cfor any n € Z+U{0} and 0 < R < +oosuch
that zn_o ¢y, R® converges, then En—o a, " and Z o bn R™ converge, where ¢, = a, +1ib,
for any n € Z + U{0}. Thus lim,_ ;- 5 /2% c,z” = En___o ¢n. We note that 2:20 cpz™ is
analytic function on lzl < R. But "} ¢,(—R)" may even not converge. Thus we can not
prove lim,_,, 2 coCn2" = Zn-—o ¢n. But, by Dirichlet problem, we can have the following
similar result.

Lemma 2 Let f(z) be a function continuous on |z| < R < 400, and enalytic on |z] < R.
If f(z) = _m—o cnz™ on |z| < R, then f(z) = Z+—o enz” on |z| < R, where the former
convergence is absolute on |z < R, and the latter convergence is uniform on |z| < R
(Proposition 3,[1)]).

In the latter part of this paper, we consider the connections between Abel summability
and Cesaro summability. We also present some applications on Markov chains.

Abel (and also cesaro) summability can also be defined in terms of sequence. For this
purpose, we use the following conventional notations If {a,}}% is a sequence of real
numbers, then we let s, = 3°p_oax and 0, = 7357 Y oo sk for any n € Z + U{0}. The
series 312 a,, (or sequence {s, }+2 which may not be defined as the partial sums) is said
to be ¢;-summable {(or ¢;-limitable) to a if lim, . yo0 0 = a(p.4-p.7,[6]).

Lemma 3. ifa, € R,by = ap and by = an—an_y foranyn € Zy, thena, = 3 p_, bs for
anyn € Z+4+U{0}. Thuslim,. ;e ﬁ_—l Yk=0e =a€R iﬂZ::{, b, is cj-summable to a iff
limn— 400 3 peo(l— 757)bk = a (Example 1 on p.7,[6]). Also, lim,_1-(1~2) Y7 an2” =
a ezists iff 3% b, is A-summable 10 o'
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Proof: We can prove by induction that a’s are the partial sums of the series Z::B b,
Thus lim, 400 =55 n+1 S r_oar = aiff }:+ b, is ¢;-summable to a. But

11}; =n+lZ(Zbk)—n+12n+l—k)bk._2(l— +1)bk

m=0 k=0

for any n € Z;.

The second statement is proved.

We note (1 - 2) Cr_oaxa* = Y oaret — Tt apoizt = a0 + T (ar — okon)a* -
anz™tl = Y0 _obra* — (pog be)z™t! for any n € Z and 0 < z < 1. The third statement
is proved.

From the second statement of Lemma 3, we can easily derive the following consequence.

. 400 — 1 n
Theorem 2. For any series ) ") an of real numbers, 0n — $n = 37 ) 4o kar. Thus

ifa, = 0(;1;) as n — +o00, and liMp— 40 0n = @ € R, then limp_. 4 5, = @ (Example 3 on
p.7,(6]).

Proof: Let b, = Y";_,ax for any n € Z + U{0}, then 0, = Y ;_,(1 — nLH)ak. Hence
lsn —a| < |on —a| + |on — sn] < %s+ |on — 8n| for any n > n;, where ¢ > 0 is given
and n; = n;(e) € Zy. Let n, € Z with |na.| < ie for any n > ny. Thus |on — sa] <
i (ko kar ] + X, Ikar]) < iy Rz lkae] + G55 < 537 Tito lkarl + e

Let n3 € Zy with 37 232 [kax| < fe for n > nz. Thus |s, —a| < e forn > ng =
max{nj,ns,nz}. There are several important results similar to Theorem 2.

For example, if o, is replaced by o(z) = 372 a,z" = (1 - z) S (S ak)z™ for any
0 < 2 < 1andlim,.,;- o(z) = a, then limy, , 4o 5, = @. This is the first tauberian theorem
(Theorem I11.3,[6]). If o, is replaced by o(z),lim, - o(z) = a and a, = 0(1) as n — +oo,
then lim, 400 5n = a. This is so called the J.E.Littlewood theorem (Theorem II1.9,[6]}).
But both results can not be proved as easily as Theorem 2.

By the third statement of Lemma 2, we can reformulize Abel summability through se-
quence: A sequence {s,}7Z% is said to be A-limitable to a € R if

+0o0 +o00 +00
(1——:::)an$" = Zs"z"/z:c" —aasz— 1"
n=0 n=0 n=0

The series 3% a,, of real numbers is said to be A-summable to a iff {s,}}3 is A-limitable
to a (Lines 8-9 on p.24,[6]).

We give another expression of the well-known fact that Cesaro summability implies Abel
summability in the first statement of the following results.

Theorem 3. Let a, € R for any n € Z+ U{0} and f(z) = 5512 anz™ be well-defined
forz >0 suﬁiczenﬂy closed to 1 in (ii), (iv), (v) and (vi).

(1) Iflimayeo 547 2kmok = a € R, then lim, ;- (1—z) T+

z" = a (cf. Theo-
rem 2.3,[2]). '

n=0@
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(ii) If an > Ofor there is an K € R with ap > —K) for any n € Z + U{0}, and
limy_;-(1 = 2) 72 a,2" = a € R, then lim,,_.+°°n+_12',:=o ar = a (Theo-
rem 2.3.5,[2] and Theorems 111.6-7,[6]). By the previous language (i.e.a,’s are con-
sidered as partial sums ), any A-summable infinile series zi::) a, with s, to be non-
negative (or bounded below ) is c,-summable to the same value (Theorem III.8,[6]).
The ezira condilions in the latter statements are siringent.

(i) (N.H.Abel;1826) If 37> a, = a € R, then lim,_;- z:to anz"

(iv) If ¥ a, is A-summable to a € R and @, = 0(1) as n — +oo, then Yot an
converges to a (Theorem I11.3,(6] and p.104,[7]).

(v) If 1% an is A-summable to a € R and a, = 0(1) as n — 400, then Yot an
converges 1o a (Theorem 13,[7]).

(vi) (E.Landau;1913) If 7% a,, is A-summable to a € R and there is an K € R with
na, > —K for any n € Z + U{0}, then E:So a, converges and is cy-summable 1o a
(Theorem 14,[7]).

Proof: (i) Let by = ag and b, = @,—a,-; foranyn € Z+ Since Z::% b, is C1-summable
to a, it is A-summable to @. Thus lim,_;- (1-2) Y72 ap2™ = limg_ ;- 3720 baz™ = a by
Lemma 3. (i) We consider a partial case: ap > 0 and @, > @, for any n € Z;. Thus b, >
0 for any n € Z + U{0} and lim,_,,- Z:::% b,z" = a. By the converse of Abel’s theorem,
S b, =a,ie. liMp i @n = My poo I oo bk = @ and limp— 4oo n#“ Y h_0@k = a.

For the proof of the general case of the first statement, we need the following technical
lemma.

Lemma 4. If f : [0,1] — [0,+00) is a Riemann integrable function and € > 0 is given,
then there ezist polynomials p(z) and P(z) on [0,1] with p(z) < f(x) < P(x) for any
0<z<1 and fol(P(z) — p(z))dz < € (p-501 of K.Knopp’s “Infinite series”, 1961).

Proof: We consider the following cases:

(i) f is a finite union of step functions: Let 0 =ap < a1 <as < ...an-3j<ap=1land f
be constant on the (open/closed/open-closed/closed-open) interval < ag_i,ax > for
k=1,2,...,n (Fig.1).

There is a continuous function h(z) on {0, 1] with f(z) < h(z) forany 0 < z < 1 and

fol (h(z)—f(z))dz < §. By Weierstrass approximation theorem, there is a polynomial
Q(z) on [0,1] with |Q(z) — h(z)] < § for any 0 < z < 1. Let P(z) = Q(z)+ § for any
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0<z<1,then f < Pon{0,1} and fol(P(z) — f(z))dz < ie. Similarly, we can find
a polynomial p(z) on [0, 1] with p < f on [0,1] and fox (f(z) — p(z))dz < . Thus
j;,l (P(z) — p(z))dz < e.

(ii) General case: By the definition of Riemann integrability, there exist two unions of
step functions S;(z), Sz(z) and polynomials py(z), p2(z), Pi(z) and Py(z) with

0 < 8i(z) < f(z) £ Sa(z), pi(z) < Si(2) < Pi(z), pa(z) < Sa(z) < Pafx)
forany 0 <z <1, and

1 1
[ (@) - 5:de < 3o, [ (5a60) - s@de < 3o
! (z) d 1 ! P d 1
/0 (" — p1(2))dz < Ze’/o (P2(z) — pa(z))dz < i

Thus f, (Py(z) — p1(2))dz < e
Abel’s theorem is a};plied to characterize the recurrency and transciency of states in a
homogeneous Markov chain (Theorem I1.2.1,{4]). But most importa.nt results in this subject
are based on the limits of transition probabilities: limg..qo00 p 1/ ::(’,n ,(c:) and
limp s 400 phk = fue/ Zn—o ) for any aperiodic, recurrent state k and any state h, and
limy— 4 oo p("d) = d/ zn—-o nf,g for any periodic recurrent state k& with period d. But the
identity limn— 40 phk = dfpx/ 50 nf (") for any periodic recurrent state k with period

d and any state h is not necessarily correct (cf. Theorem III. 2.3 and Exercise I11.2.11,[4]).
A general identity can be obtained for all the cases by applying Theorem 3.

We let ¢pi(2) = 35 2" and Fiue(z) = 42 F)2n for any states b, & and |2] < 1.
Thus ¢nr(z) and Frie(z) are analytic functions on |z] < 1 with @g(2) = Ffi??ﬁ and
ni(z) = fhk(z)dzkk(z) for h # k (Proposition 4(iii) and Lemma 3(ii),[1]).

Since fur = En—o fhk) and 0 < fre < 1 f'hk(z) converges absolutely and uniformly on
|z] < 1. This implies lim,_,;- Fri(z) = f;.k since Fri(2) is the uniform limit of continuous
function 3 7_, mz’ on |z} < 1.

Theorem 4. If {X,, : m = 0,1,2,...} is ¢ homogeneous Markov chain and h,k are
states with k to be positive recurrent and h # k, then

n~+mn+1§:”2’£ :1/Zn (n)

lim

and limg, 400 %EJ_I 2 = far/ TS nf™ (cf. Theorem I111.2.4,[4]).

Proof: Since k is positive recurrent, Z+°° n (") < 400 and Z ,S:)z""l is contin-
uous on |z| < 1, and equal to £ Fpx(2) on |2] < 1 We note

+o00
lm (1-2) ) e" pp) = lim (1~ 2)gex(z) = lim (1-2)/(1 - Fer(2))

r—1-

d d
— 1,9 _ . & - (n)
Yo Fer(@)lo=1 = 1/ lim ——Fie(z) = 1/ E :" :



60 W. H. Hsiang

Similarly,

400
: (M) am — 1
Jim (1= ) D phy's” = lim (1= 2)éne(e)

+00
= zl_ig1_(1 — z)Fnr(z)drk(z) = far/ Z n £k)

n=1

Since phk), pi',:) > 0 for any w € Z + U{0}, we prove these two identities by the second
statement of Theorem 3.
Another application of Theorem 3 is the following.

Lemma 5. Let {X,, : m=0,1,2,...} be a homogeneous Markov chain and h, k be states
withh # k. Iflim,_, 400 % Z'-'_ol pgk) = 7r,c ezists, then lim;, . 400 L = E;-ﬂ’hk = farmr. Thus
if imp— 400 pi',:) = m, then limp oo phk = faremr ((4D) on p.220,[5]).

Proof: limp_ 40 %ZJ__OI ng) = m; implies lim, ;- (1 — z) T} pi',':):c =lim,_;-(1 -

z)$re(z) = 7 and lim,_;~ (1 — z) 429 PE,';) = limg ;- (1 = z)ni(z) = limg_y- (1 —
) Fri(z)drr(z) = farme.
Since pg';) > 0 for any n € Z,., this implies lim;—, 40 + 2 2'.'_1 p%’k) = fhETE.

We note p{%) = Y- o FI =9 for any n € Z,, ((2 1) on p.51,(4]), and 0 < Y7 ) =
Joe <10 Iflim, 4o p&k) = Tk, then lim, oo phk = fukmr by Theorem I.4.4,[4], or
lifM s 400 Py = liMnpoo 2 T7my P = faie.

Lemma 6. If{X,,:m=0,1,2,...} is a homogeneous Markov chain and h,k are states
with h # k and k to be not positive recurrent, then

() _ (n)

im p;, lir_'x:looph,, =0.

n—+o0

Proof: If k is transcient, then $°F% p{% < +oo implies limp— 400 Py = 0. If k is
null recurrent, then we let C' be a closed, irreducible set of states containing k. Thus all
states in C are null recurrent, and the Markov chain with transition probabilities induced

by those among the states of C is an irreducible, homogeneous Markov chain. If k is a
(n)

periodic, then lim,,_.+°° Prr = 0 (Theorem II1.2.1,{4]). If k is periodic with period d, then
limn— oo PP = d/ 42 nf(2) = 0. But p{}) = 0 for d 1 n. Thus limy_. 4c0 pg,’c) =0.

For the cases in Lemma 5, we have limy—. 400 537 210 p%’k) =0andlimstoo =D a1 P pi)

=0.

At the end of this paper, we explain the dlfﬁculty of proving Abel’s theorem :

If a, € R for any n € Z + U{0} and Zﬂ_o an converges, then limp o0 an = 0 and
there isan 0 < k£ < +oo with |an| < K for any n € Z + U{0}. If |z] < 1, then

23lanz"] < KZ olzl* = 1_—KPT < 400, and Z::E a,z" converges. Thus the power

series 31> a,2" has radius of convergence R > 1, and converges at z=1. If R > 1, then
St anz™ represents an analytic function on |z| < R and $F% a, = lim, ., ¥ an 27,
in particular, + -0 8n = lim,_,;- En =0 @n2". Thus we can not conclude R > 1, otherwise
Able’s theorem becomes a trivial consequence for power series of a complex variable.
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