살충성 2-Chloro-1-(2,4,5-trichlorophenyl)vinyldimethylphosphate (Gardona)$^{\(R)}$의 가수분해 반응메카니즘

Kinetics and Mechanism of Hydrolysis of Insecticidal 2-chloro-1-(2,4,5-trichlorophenyl) vinyldimethylphosphate (Gardona)$^{\(R)}$

  • 성락도 (충남대학교 농과대학 농화학과) ;
  • 윤태용 (충남대학교 농과대학 농화학과) ;
  • 권기성 (충남대학교 자연과학대학 화학과) ;
  • 김태린 (고려대학교 이과대학 화학과)
  • Sung, Nack-Do (Department of Agricultural Chemistry, Chungnam National University) ;
  • Yun, Tae-Yong (Department of Agricultural Chemistry, Chungnam National University) ;
  • Kwon, Ki-Sung (Department of Chemistry, Chungnam Natinal University) ;
  • Kim, Tae-Rin (Department of Chemistry, Korea University)
  • 발행 : 19900900

초록

25${\%}$ methanol-수용액 속에서 살충성 2-chloro-l-(2,4,5-trichlorophenyl)-vinyldimethylphosphate(Gardona)의 가수분해 반응을 관찰하였다. 다양한 pH에서의 연구결과는 용매효과(m < 0.4, n < 0.7, |m| ${\ll}$ |l|(화합 S$_N$2 형)), 열역학적 파라미터 (${\{Delta}S^{\neq}$ = -27∼-32 e.u. ${\{Delta}H^{\neq}$ = 13∼18 Kcal/mole), 반응속도(k = k$_A$+k$_B$ [OH$^-$]), 일반염기 촉매 효과 및 가수분해 생성물 분석에 의하여 Gardona의 가수분해 반응이 전이상태와 carbanion 중간체를 포함하는 2분자적(Ad$_{N-E}$) 메카니즘으로 일어남을 암시하고 있다.

The rate of hydrolysis of insecticidal 2-chloro-l-(2,4,5-trichlorophenyl)-vinyldimethylphosphate(Gardona) have been investigated in 25${\%}$ aqueous methanol. Studies at varying pH suggest that the hydrolysis of Gardona proceeds through the bimolecular (Ad$_{N-E}$) mechanism involving the transition state and carbanion intermediate as evidenced by solvent effect (m < 0.4, n < 0.7, [m] ${\ll}$ [l](associative SN$_2$ type)), thermodynamic parameters (${\{Delta}S^{\neq}$ = -27∼-32 e.u. & ${\{Delta}H^{\neq}$ = 13∼18 Kcal/mole), hydrolysis rate equation (k = k$_A+_B$ [OH-]), general base catalysis and hydrolysis product analysis, respectively.

키워드

참고문헌

  1. Res. Rev. v.47 K. I. Beynon(et al.)
  2. J. Am. Chem. Soc. v.91 C. A. Bunton;L. Robinson
  3. J. Ecom. Entomol. v.52 R. L. Metcalf;T. R. Fukuto;R. B. March
  4. J. Korean Agri. Chem. Soc. v.26 N. D. Sung;S. H. Park
  5. J. Agr. Food Chem. v.14 R. R. Wheston;D. D. Phillips;Y. P. Sun;L. F. Ward, Jr.
  6. Naturwiss v.39 W. Perknow;K. Ullrich;F. Meyer
  7. J. Org. Chem. v.46 M. Sekine(et al.)
  8. J. Korean Chem. Soc. v.33 N. D. Sung;K. S. Kwon;T. R. Kim
  9. Curve fitting program & kinetic simulation software developed SERENA SOFTWARE
  10. New Organo-phosphorus insecticide Gardona, A.
  11. Analytical Chemistry G. D. Christian
  12. Advanced in Enzymol v.12 D. Nachmansohn(ed.)
  13. J. Am. Chem. Soc. v.101 D. R. Young;W. P. Jencks
  14. Water a Comprehensive Treatise v.6 F. Franks
  15. Acta. Chem. Scanc. v.19 A. Kivinen
  16. J. Am. Chem. Soc. v.78 A. H. Fainberg;S. Winstein
  17. J. Am. Chem. Soc. v.98 F. L. Schadt;T. W. Bently;P. V. R. Schleyer
  18. J. Korean Chem. Soc. v.27 I. Lee;T. S. Uhm;D. D. Sung;G. Yeom
  19. J. Chem. Soc. D. A. Brown;R. F. Hudson
  20. Mechanism in Organic Chemistry W. R. Alder;R. Baker;J. M. Brown
  21. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson
  22. Acc. Chem. Res. v.4 G. Modena
  23. J. Sci. Food. Agri. v.19 K. I. Beynon;A. N. Wright
  24. The Chemistry of Alkenes v.1 S. Patai(ed.)
  25. Adv. Phy. Org. Chem. v.7 Z. Rappoport
  26. Physical Organic Chemistry N. S. Issacs
  27. Adv. Phys. Org. Chem. v.6 J. M. Williams;M. M. Kreevoy
  28. Fast Reaction E. F. Caldin
  29. Res. Rep. Env. Sci. Tech. v.1 N. D. Sung
  30. J. Am. Chem. Soc. v.84 A. Schriesheim;C. A. Rowe. Jr.
  31. J. Chem. Soc., Perkin Trans II J. Toullec
  32. J. Org. Chem. v.28 J. Flymm, Jr.;V. V. Badiger;W. E. Truce
  33. Adv. Phy. Org. Chem. v.7 Z. Rappoport
  34. Physical Organic Chemistry N. S. Issacs
  35. Metabolic Maps of Pesticides H. Aizawa
  36. Chem. Rev. v.75 A. Williams;K. T. Douglas
  37. Stereoelectronic Effects in Organic Chemistry P. Deslongchamps
  38. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson
  39. J. Am. Chem. Soc. v.94 R. D. Frampton;T. T. Tidwall;V. A. Yong
  40. J. Am. Chem. Soc. v.99 S. Y. Attia;T. P. Berry;K. M. Koshy;T. T. Tidwall
  41. Chem. Rev. v.51 F. W. Lichtenthaler
  42. J. Org. Chem. v.37 A. Arcria;S. Fisichella;F. Sardo