Time Resolved Electron Spin Resonance Spectroscopy of Anthrasemiquinone Radical Produced by Pulse Laser Photolysis. A Study on Chemically Induced Dynamic Electron Polarization

광화학 반응에서 생성된 Anthrasemiquinone Radical의 시간분해 ESR ; CIDEP에 관한 연구

  • Hong Daeil (Department of Chemistry, College of natural Science, Keimyung University) ;
  • Kuwata Keiji (Department of Chemistry, Faculty of Science, Osaka University)
  • 홍대일 (계명대학교 자연과학대학 화학과) ;
  • Published : 19900900

Abstract

The time resolved electron spin resonance spectroscopy are used to two measurement methods of chemically induced dynamic electron polarization (CIDEP) and absorption ESR. The spectra of the semiquinone radical anion were successively detected in the laser flash photolysis of anthraquinone in the mixtures of 2-propanol and triethylamine. The semiquinone radical anion was fairly stable and its cw ESR could be observed. The rate constant (T1$^{-1}$) of the spin-depolarization of polarized semiquinone radical anion was 2.6 ${\times}\;1-^5$ sec$^{-1}$ and the decay of the radical anion was the first order with the rate constant (K$_1}$) of 300.0 sec$^{-1}$. The intensity of CIDEP spectra increased with the increasing the microwave power, but the Torrey wiggles appeared following with decay curves.

시간분해 ESR 분광법에서는 CIDEP법과 흡수 ESR 분광법을 사용하였다. 2-프로판올과 트리에틸아민 혼합용매에서 anthraquinone이 레이저 광선에 의해서 생성된 anthraquinone 라디칼 음이온을 시간분해 ESR 분광법으로 측정하였다. 이 semiquinone 라디칼은 대단히 안정하여 cw ESR을 측정할 수 있었다. 분극된 semiquinone 라디칼이 열적 평형상태로 소멸되는 속도상수는 스핀-격자 완화시간의 역수로서 2.6 ${\times}\;1-^5$ sec$^{-1}$이다. 그리고, 그 라디칼의 소멸속도상수는 300.0 sec$^{-1}$이다. CIDEP스펙트럼의 시간의존성에 대한 강도 변화는 마이크로파 출력이 강할수록 일반적으로 증가하였다. 그러나, 지나치게 출력을 높이면 감소 곡선상에 Torrey 진동이 뒷따라 일어났다.

Keywords

References

  1. Technigues of Chemistry v.II Orgamic Solvents J. A. Riddick;W. B. Bunger
  2. Phys. Rev. v.76 H. C. Torrey
  3. J. Phys. Chem. v.74 R. Zeldes;R. Livingston
  4. J. Phys. Chem. v.66 F. Wilkinson
  5. Chem. Phys. Lett. v.57 no.3 A. D. Trifunac;M. C. Thurnauer;J. R. Norris
  6. J. Phys. Chem. v.82 A. J. Elliot;J. K. S. Wan
  7. Chem. Comm. P. W. Atkins;I. C. Buchanan;R. C. Curd;K. A. McLauchlan;A. F. Simpson
  8. Z. Naturforsch v.25A H. Paul;H. Fisher
  9. J. Am. Chem. Soc. v.104 S. Inbar;H. Linschitz;S. G. Cohen
  10. J. Org. Chem. v.38 J. B. Guttenpan;S. G. Cohen
  11. J. Am. Chem. Soc. v.90 S. G. Cohen;H. M. Chao
  12. J. Am. Chem. Soc. v.94 S. K. Wong;J. K. S. Wan
  13. Chem. Rev. v.73 S. G. Cohen;A. Palola;G. H. Parsons
  14. J. Am. Chem. Soc. v.97 H. M. Vyas;S. K. Wong;B. B. Adeleke;J. K. S. Wan
  15. Chem. Phys. Lett. v.75 P. J. Hore;K. A. McLauchlan
  16. Chemically Induced Magnetic Polarization L. T. Muus(ed.) ;P. W. Atkins(ed.) ;K. A. McLauchlan(ed.);J. B. Pedersen(ed.)
  17. J. Chem. Phys. v.70 no.10 T. Murao;T. Azumi
  18. Chem. Phys. Lett. v.69 P. J. Hore
  19. Mol. Phys. v.27 P. W. Atkins;G. T. Evans
  20. J. Chem. Phys. v.58 R. W. Fessenden
  21. Chem. Comm. v.4 P. W. Atkins;K. A. McLauchlan;P. W. Parcival
  22. J. Chem. Phys. v.59 J. B. Pederson
  23. Chem. Soc. Specialist Periodical Report ESR v.5 P. J. Hore;C. G. Joslin;K. A. McLauchlan
  24. J. Chem. Phys. v.72 no.8 T. Murao;T. Azumi
  25. Chem. Phys. Letters v.113 no.2 K. Hamanoue;K. Yokoyama;Y. Kajiwara;M. Kimoto;T. Nakayama;H. Teranishi
  26. Trans Faraday Soc. v.61 K. Kickle;F. Wilkinson
  27. J. Chem. Phys. v.39 R. W. Fessenden;R. H. Schuler
  28. J. Mag. Reson. v.36 P. J. Hore;K. A. McLauchlan
  29. J. Am. Chem. Soc. v.70 N. J. Leonard;L. E. Sutton
  30. J. Chem. Phys. v.53 R. Livingston;R. Zeldes
  31. Pure Appl. Chem. v.2 J. F. Counsell;D. H. Everett(etal.)
  32. Ph. D. Thesis, Osaka University D. I. Hong
  33. Mol. Phys. v.42 P. J. Hore;A. K. McLauchlan
  34. J. Phys. (E) v.3 P. W. Atkins;K. A. McLauchlan;A. F. Simpson
  35. Molecular Spectroscopy P. W. Atkins;K. A. McLauchlan;A. F. Simpson
  36. Rev. Chem. Intermediates v.2 P. J. Hore;K. A. McLauchlan
  37. Chem. Soc. Rev. v.8 P. J. Hore;C. G. Joslin;K. A. McLauchlan
  38. Mol. Phys. v.25 P. W. Atkins;K. A. McLauchlan;P. W. Parcival