The MO Study about Interaction of cis-Diamminedichloroplatinum (cis-DDP) Complexes with DNA base, 1-Methylcytosine, for Development of Anti-Tumor Drugs

항암성물질의 개발을 위한 cis-Diamminedichloroplatinum (cis-DDP) 류와 DNA base인 1-Methylcytosine의 Interaction에 관한 분자궤도함수론적 연구

  • 김의락 (계명대학교 자연과학부 화학과) ;
  • 김상해 (계명대학교 자연과학대학 화학과) ;
  • Published : 19900700

Abstract

It has been studied that relations between electronic structure and anti-tumor activity by variation of amine group in cis-diamminedichloroplatinum (Ⅱ) complexes. We were also interested in these Pt (Ⅱ) complexes interaction with 1-methylcytosine of DNA base and the electronic structure of these complexes in order to understand the mechanism of the metal-nucleobases interaction. The results showed that net charge of center metal in Pt complexes effect anti-tumor activity. The mechanisgm of the bonding between metal and ligands largely based on charge transfer from ligand to metal atom. Furthermore, the established molecular orbitals showed that metal 6p-orbitals played an important role in the bonding scheme for the interactions between platinum (Ⅱ) complexes and 1-methylcytosine. We also found that the stronger Pt-N3 bonding strength became, the better anti-tumor agents were.

cis-diamminedichloroplatinum (II)에서 아민리간드가 변화할 때, 항암성과 백금원자의 전자구조 사이의 관계를 연구하였고, 또 이러한 착물과 DNA base인 1-methylcytosine의 상호작용에 대한 메카니즘을 알기 위해서 백금(II)착물들을 분자궤도함수론적으로 연구하였다. 그 결과, 백금착물에서 중심금속의 atomic charge가 항암성에 영향을 미치고 있음을 알았다. 또한 백금착물과 1-methylcytosine의 결합은 리간드에서 금속원자로 전하이동을 하였고, 이 때 Pt(II)의 6p-orbital이 중요한 하고 있음을 발견한다. Pt-N3결합성은 $\alpha$$\pi$ 성분을 포함하고 있으며, 실험한 값과 비교할 때 비교할 때 항암성이 큰 백금착물일수록 Pt-N3 결합이 강하게 형성하고 있었다.

Keywords

References

  1. Nature v.205 B. Rosenberg;L. VanCamp;T. Krigas
  2. J. Am. Chem. Soc. v.90 G. L. Eichhorn;Y. A. Shin
  3. Progr. Nucl. Ac. Res. Mol. Biol. v.22 J. J. Roberts;A. J. Thomson
  4. Nature v.194 G. L. Eichhorn
  5. Progr. nucl. Ac. Res. Mol. Biol. v.12 J. J. Roberts;A. J. Thomson
  6. Acc. Chem. Res. v.18 R. B. Martin
  7. Biochem. Biophys. Acta v.780 A. L. Pinto;S. J. Lippard
  8. Platinum Coordination Compounds in Cancer Chemotherapy M. P. Hacker;E. B. Douple;I. H. Hrakoff
  9. Science v.218 S. J. Lippard
  10. Coordination Chemistry reviews v.12 M. J. Cleare
  11. J. Amer. Chem. Soc. v.104 J. P. Caradona;S. J. Lippard;M. J. Gait
  12. At. Data Nucl. Data Tables v.12 C. F. Fischer
  13. J. Chem. Soc. A M. R. Truter;C. W. Milbrun
  14. Inorg. Chem. Acta v.9 L. E. Harris;E. A. Boudreaux
  15. At. Data Nucl. Data Tables v.19 B. Fircke;G. Scoff
  16. J. Biol. Chem. v.242 B. Rosenberg;L. VanCamp;E. B. Grimley;A. J. Thomson
  17. At. Data Nucl. Data Tables v.18 K. N. Huang;H. Mark
  18. At. Data Nucl. Data Tables v.12 J. P. Deschaux
  19. J. Amer. Chem. Soc. v.103 J. D. Orbell;L. G. Marzilli;T. J. Kistenmacher
  20. Inorg. Chim. Act. v.9 L. Z. Harris;E. A. Boudreaux
  21. Int. J. Quan. Chem. v.18 E. A. Boudreaux;T. P. Carsey
  22. Nature v.222 B. Rosenberg;L. VanCamp;J. E. Trosko;V. H. Mansour
  23. J. Chem. Phys. v.83 R. Arratia-Perez;C. J. Yang
  24. Int. J. Quan. Chem. v.12 V. Kothekar;S. Dutta
  25. Structure and Bonding v.67 J. Reedijk;A. M. J. Fichtinger-Schempman;A. T. van Oosterom;P. van de Putte