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The transition from one stable steady state branch to another stable steady state branch in a simple metabolic system wi버 

positive feedback is discussed with the aid of the bimodal Gaussian probability distribution method. Fluctuations lead to tran

sitions from one stable steady state branch to the other, so that the bimodal Gaussian evolves to a new distribution. We also 

obtain the fractional occupancies in the two stable steady states in terms of a parameter characterizing conditions of the 

system.

Introduction

Biochemical reactions with feedback mechanisms may 

show the interesting phenomena of multiple steady states, 

such as hysteresis due to transition among the branches of 

steady states and oscillation.1*3 The multiple steady states 

which result from the use of homogeneous macroscopic 

equations have been observed in a variety of systems, 

especially in superconductor, in van der Waals gases, and 

etc.4 Many authors have studied the existence of multiple 

steady states and hysteresis in chemical and biochemical 

systems.2,5,7'8 These behaviors are exhibited due to 

nonlinearity of the kinetic equation involved. There exist 

simple kinetic models consisted of many dimensional or

dinary differential equations for the concentrations of the 

metabolites in a biochemical system.3'7 Even though they are 

simplified, they are at least comparable with the experimen

tal results qualitatively.
The purpose of the present paper is to investigate the 

transition between branches of stable steady states of a 

biochemically reacting system which is controlled by 거 posi

tive feedback mechanism.7*10. At first, we obtained the 

steady state values from the deterministic equ거tions which 

describe the instability for a biochemical reaction model with 

positive feedback. With the aid of the Fokker-Planck e이ua- 

tion corresponding to the Langevin equation which describes 

fluctuations from the steady state due to the random forces 

(diffusion),5,6 we obtain the bimodal Gaussian distribution in 

the region of multiple steady states. The bimodal Gaussian 

distribution should evolve to a new distribution by fluctua

tions. Thus, in order to discuss transitions between stable 

steady states due to fluctuations we obtain the fractions 

which describes a new Gaussian distribution at stable steady 

states in terms of the parameter which characterizes condi

tions of the system.

Theory

A kinetic equation for a model of mk Lolic control circuit 

with positive feedback is given as1,7

監X、=f(、X")fX、 (2.1)

at

&X, = Xi-瓦X,, 

at

where X} and 外 are the dimensionless concentration and the 

rate constant of the ./-th component, respectively, and

f(Xn> «)=7TVF- (2.2)

丄十-An

Here, p is the cooperativity of the positive feedback system 

and h is the controllable parameter depending on tempera

ture and concentrations and etc.
Under the steady state approximation, the steady state 

value, X；, is the 옹。hition of the following eauation:

/(X；,")”X；=0, (2.3)

with 甲歸 The steady state value X：is discontinuous at 
the marginal stability point uv As the parameter // is slowly 

increased, the system reaches a marginal stability point. 

Further increase in the parameter (/uses the system to 

change to another stable branch. As the parameter is 

decreased, the system evolve옹 to another marginal stability 
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point. Also, further decrease in the parameter brings abo나t a 

transition to stable branch. The system has multiple steady 

states between lower marginal stability point and higher 
marginal stability point 此.

For simplicity let us consider that the cooperativity (力) 

and the feedback length (n) are both 2 and all kinetic con

stants are equal to /?. In the region of multiple steady states, 

the stability of the steady states is determined by the linear 

stability analysis.11 When there exist three steady states, the 

lower and higher steady states are stable but the interme

diate one is unstable. When the system in a stable steady 

state is disturbed by random forces, it will be driven away 

from its state. In terms of the deviation from the steady state 

value, x- = X- - X% the Langevin equation is given as

京：)=n)(：)+n， (2.4)

where

加=广(XL). (2.5)

and i denotes the higher or the lower steady state value. The 

random forces, g /s, are assumed to satisfy the following 

Gaussian conditon:

W)〉=0,〈C Off )〉= 2Q"璀(£—¥), (2.6) 

where the brackets denote an ensemble average over the 

fl나ctuations of the random forces, l)t/ is the diffusion coeffi

cient, 们「is the Kronecker delta, and is the Dirac delta 

function.

With the aid of the normalized left and right eigenvectors 

corresponding to eigenvalue -A,- of the matrix in Eq. (2.4) 

denoted by and respectively, the Langevin equation 

can be diagonalized. Then, the Fokker-Planck equation for 
the transition probability is given as6,10

2 a a 2
(知必，‘"或)=么(岫矽-%顽京

〉頒(乂,功，游:，或)， (2.7)

where

以=堂•纟，盘=项成

2%渺。一少=〈〃(£)，；(£')〉. (2. 8)

The initial condition for the transition probability is assumed 

to be the Dirac delta distribution.

Let us define the Fourier transform with respect to the 

variables 们 and q2 as follows.

P(北,北，£ 顷°,或)=(M) ~2 J'dq.dqz expfz (45 +奶2)〕

xPg%,凡再，或).(2.9)

Substituting Eq. (2.9) into Eq. (2.7), we obtain the following 

equation:

a *7 2 3 '—■
—P=^ (- A1- --- du P i (2.10)
dt u dqj

Thus, we may express the solution for 尸(幻，处，例的 as

~ 2 1
尸=r exp{-zg,A4‘⑴血 ％(£)} (2.11)

i,J = l Z

where M-(t) and (셔(f) are the first moment and the variance 

with respect to the variables v/s, respectively. It can be 

shown that the time derivatives of and C^t) satisfy the 

following equations,

M； =

G； © = -&& ⑴一 C£(O 膈+2d〃 (2.12)

where the dots denote differentiations with respect to time. 

Since and Cj(t) are symmetric, the solutions are

M： (/) = exp (-")必

(")=2上쯔竺스二业 d“ (2.13)

人z十人J

where we have neglected the initial value of CJ(/). Rewriting

V, and di} in terms of the original variables with the aid of Eq.

(2.8), we may express the probability distribution at a steady 

state as

Pst (Xl, %2)=P(Xi,七,8 " X； , 0)

= 云歸 exp<Y(。이〕

+ 2(C-1 (00)] 12X,X2+ CC-1 (00) ]} (2.14)

The expressions of the variance for the system at the steady 

state are written as

厂 /cc、\— 2Qu 丿 侬-시저丄侬-人 J? 2 {k-Ai) {k- A2) 
如)=K二奇 r元一+一瓦 汀W -‘

+ 2，爲〔与쏘二스）， 

人2 A 1
{---- 1----
2入】2人2

人1+人」'

厂(ZD” . k- A 2 k— A1 2k— A! - A2.
C12( )= 无项피人" }

_ ,厂)〈标_ 人 J 伉一人2)人 I . A 2 _ 2k— A1 - A 2^ 
'厂 (人厂*)2—気「十刁言 丄+人고 '

(2.15)

厂 2% ,1,1 2 .
瞞(0°)FF1质:F _布寸

. 2D22 (^-A2)2 2 (^-Ax) (^-A2),
(人 2-从)2 1 2A} —- K 人2

where

入人2=砰/万 (2. 16)

We assume that the diffusion coefficient of each component 

is equal, = D22 = D. Then, the inverse and the determinant 

of the covariance matrix at the steady state are given as
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_ 2^(2柜2-/z+l)
C()儿—。⑷『+ 3-1)，'

[C(oo)-l]12=-
2仃侬+1)

Q⑷『+統-1)2}'
(2.17)

Table 1. The Ratio of fi and fh for the Parameter it when 中=0.5 

and D=0.1 in the System

0.01 0.02 0.03 0.04 0.05 0.06 0.07

fl 0.978 0.920 0.774 0.519 0.254 0.092 0.022

fh 0.022 0.080 0.226 0.481 0.746 0.908 0.978

@（8）-" — 아心*- H） 
〔이）&2—〃{4炉+（物一1）2} '

宀j宀刑Z乙#+（41）\ 
旳CS）}=F/終_而一}・

Under the condition that the system has three 응teady 

states, the upper and lower steady states are stable and the 

intermediate one is unstable. The probability distribution is 
the bimodal Gaussian peaked around and X0̂, where Xf 

is the lower concentration steady state and X0^ is the hi응her 

one. It is well known that an arbitrary initial distribution 

may be expressed as the bimodal Gaussian5,

%(셰馈)=A꺄3：，务°)+/况旧°杰)，(2.18)

where fh and 刀 are the fractions of the ensemble initially 

concentrated on the domains of attraction of the steady states 

烈 and X* For the macroscopic system, the existence of the 

bimodal Gaussian implies that hysteresis can be observed 

and the steady state distribution is governed by the initial 

distribution. The distribution should evolve to a new distri

bution due to fluctuations. That ev이니tion results in the 

change of the fraction

^fh Si fl ~ Shfh^ (2. 19)

where gh is the value of the normalized Xf Gaussian b이ow 

the unstable steady state X： and 幻 is the value of the nor

malized Xf Gaussian above X*. When this evohition takes 

place during a time interval r, a kinetic equation for the frac

tional occupancies becomes

^A=-(A-A)/f, (2.20)

where f is a new relaxation time given by

T / (gz+gh) (2.21)

and and are the steady state fractions in the two stable 

steady states:

흥I

幻+gh

and 万=―희 .

g，+g凡

(2. 22)A =

The values of 幻 and gh are obtained by

=jc & (X】* - X： l)erfc[fih (XJ - XJ)〕(2. 23) 

4

and

Table 2. The Ratio of 力 and fh for the Parameter u when 夕=0.53 

and D= 0.1 in the System

0.055 0.060 0.065 0.070 0.075 0.080 0.085

fl 0.948 0.858 0.718 0.530 0.337 0.177 0.065

Jk 0.052 0.142 0.282 0.470 0.663 ().822 0.935

诳= R； %2) dxy dx2

= ! e冼〔아 (X； “ - XJ) 也力如 (X注 - X：)〕(2. 24) 

4

where ar and pr are given as

음戸) anc0(X技)=(去) (2.25)

and erfd^z) is the complementary error function. In Eq. (2.25), 

r denotes either h or I.

The bimodal Gaussian distribution should evolve to a new 

distribution by fluctuations. Thus, using the fractions fh and 

ft, we may discuss transitions between stable steady states 
due to fluctuations. The r이axation to the distribution is 

governed by 4 and The value동 of 幻 and gh are very small 

except around the critical values (marginal stability points) of

Results and Discussion

Multiple steady states in biochemical systems with 
positive feedback mechanism have been observed.3 One of 

the important problems is whether or not phase separation 

into two stable steady states occurs. If such a phase separa

tion occurs, it is unlikely that it would be at the Maxwell-type 

construction. The analogue to phase separation in nonequili

brium systems is caused by nonuniformities and the Maxwell 

construction gives only an approximation to this phenomena. 

A stochastic diffusion process for which the probability 

satisfies the Fokker-Planck equation gives bimodal Gaussian 

probability for the two phases. It is not necessary to equate 

the probability distributions between the two phases, be

cause the amounts of the two phases can be calculated.

Transition between branches of stable steady states of 

a bio사lemically reacting system which is controlled by the 

positive feedback mechanism represents a change in the 

parameter of the system. The bimodal Gaussian depends on 

the fractions of f{ and fh as shown in Tables 1 and 2. In the 
case that 甲=0.5, the values of 祚 and u\ are 2/27 and 0, re

spectively, and when 甲=0.53 the lower and higher marginal 

stability points are about 0.053 and 0.086. Near th은 para
meter 祚 the fraction is 元〉and near 雄 the value of fh is 



560 Bull. Korean Chem. Soc., Vol. 17. /Vo. 6, 199() Jin-Ho Choy et al.

very smaller than the value of f{. This means that a gradual 
change of the steady state from one dominated by X지 con

centration at to one of Xoh concentration at 祚 will be 

observed. There is a discontinuous change from X°lGaussian 

to Xoh Gaussian at that value of it = itm satisfying Max

well-type construction(〃/方=1). The ratio depends on the 

value of the parameter h. For the lower steady state is 

dominant whereas for n>um, the higher one becomes domi

nant. This is expected for a large system when observations 

are made on a time scale far longer than the kinetic processes 

occurring in the system. Otherwise, the hysteresis will be 

observed.
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A.c. susceptibility for Bix 4pbo.6Sr2Ca2Cu3 6Or superconductor is measured as a function of temperature at different value of 

a.c. magnetic field amplitude. Two transition steps are attributed to the intergranular and intragranular properties. Based on 

Bean's critical state model, intergranular critical current density,糜(]]A/cm2 at 77 K) and intragranular critical current 

density, // (7 x 103 A/cm2 at 100 K) are estimated. The low values of and Jp reflect a poor nature of coupling between 

grains and the low pinning force density of intragrain in Bij 4Pb0 6Sr2Ca2Cu3 superconductor.

Introduction

Recently, a new superconducting Bi-Sr-Ca-Cu-0 
system with high critical temperature was discovered.1 The 

Bi-Sr-Ca-Cu-0 system mainly contains two superconduc

ting phases, Bi2Sr2Ca2Cu3Ox (2223 phase) and 

圧2&2(无£112(丄(2212 phase) with 7； of 110 K and 80 K, re

spectively. Partial substitution of Bi by Pb was found to in
crease the volume fraction of the 2223 phase.2 Furthermore, 

it has been reported that addition of Pb prevents stacking 

faults of the layer structure and promotes crystallization of 

the 2223 phase.3

In this work, the magnetic and current transport proper

ties of the Bi-Pb-Sr-Ca-Cu-0 system are studied by a.c. 

magnetic susceptibility (X=X' - iX,() measurements. The 

changes of the real part signal X' and the imaginary part 

signal with respect to the temperature are caused by in

duced shielding current and hysteresis losses, respective- 

ly：，5 which are related to the critical current density, Jc. The 

purpose of this study is to estimate the critical current densi

ty of Bi[ 4Pb0 6Sr2Ca2Cu3 6OX superconductor and to describe 

the nature of coupling between grains and the intrinsic su

perconducting property.

Experimental

The 2223 phase was prepared by solid state reactions of a 

mixture of Bi2O3( PbCO3, SrCO3, CaCO3 and CuO with the 

nominal composition of Bi r 4Pb0 6Sr2Ca2Cu3 6Or The mixed 

powder was pressed into pellets, and then calcined at 810 °C 

for 24 hr in air. The resulting pellet was reground, pelletized 

and finally sintered at 855 °C for 160 hr in air then slowly 

cooled down to room temperature.

The product was characterized by powder X-ray diffrac

tion with Ni-filtered Cu-KQ radiation. The temperature de

pendence of electrical resistivity was measured with a con

ventional four probe method. The microstructure was ob

served by scanning electron microscope (SEM).


