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Evaluation of the function is

The function exp(X2) erfc(x), which is often encountered in studies of electrode kin러ics, is evaluated to an extended precision 

with 32 significant decimal digits in order to find theoretical relationships used in derivative polarography/voltammetry for a 

chemically-coupled electrode process. Computations with a lower precision are not successful ~ 

accomplished by using three types of expansions for the function. Best ranges of arguments are selected for each equation for 

particular precisions for efficiencies. The method is successfully applied to calc니ate higher-order derivatives of the current

potential curves in all potential ranges for a reversible 이ectron transfer reaction coupled with a prior chemical equilibrium 

(M, a CE type process). Various parameters th건 characterize the peak asymm은try (such as ratios of peak-heights, ratios of 

half-peak-w记ths, and separations in peak-potentials) are analyzed to find how kinetic and thermodynamic parameters in

fluence shapes of the derivatives. The results from the CE process is compared with those from an EC process in which a re

versible electron transfer is coupled with a follow-up homogeneous chemical reaction. The two processes exibit quite con-

trasting differences for values of th은 parameters.

Introduction

It has been suggested in recent years that polarographic 

current-potential curves can be more precisely analyzed if 

one takes derivatives of the potential-current curves and then 

examine several variables that 저re associated wi버 the deriva

tive curves1,2. However, there are several problems as

sociated with the derivative approach in both computational 

and experimental aspects. This paper deals with a problem in 

the computational aspects.

Although most scientific computations can be handled 

with double-precision arithmetic (typically 14 to 16 decimal 

digits) when sin이e-precision arithmetic (typically 6 to 9 

decimal digits) yields inaccurate results, some computations 

which are encountered in chemistry in recent years cannot 

be adequately handled even with the double-precision mode. 

For example, it has been shown that concentration-distance 

profiles and current-potential-time relationships 니nder cer

tain polarographic/voltammetric conditions can be found on

ly through a higher precision computation requiring about 30 

decimal digits1. Moreover, the problem^ associated with the 

level of precision become especially serious in the derivative 

approach of polarography2,3, where evaluations of current 

derivatives include subtraction involving two terms of com

parable magnitude, hence generating severe round-off er

rors. The error become옹 a serious matter in a progressive 

manner as the order of differentiation increases.

The functional form of expfx^erfcU) occurs frequently as 

a solution or as a part of a solution for current expressions of 

many electrochemical boundary value problems whenever 

diffusion is coupled with a slower chemical or elec

trochemical kinetic step4. This is true regardless of the me

thods employed4,5: such methods include po- 

larography/voltammetry, chronoamperometry, and chro

nocoulometry. One of the simplest and most popular ways to 

evaluate the function is based on Easting's rational approx- 

+ Visiting Scholar from Department of Chemistry, Hanyang Univer- 

sity, Seoul 133-791, Korea 

imations of the error function6,7. However, the earlier ra

tional approximations for erf⑴ or erfc(x) are strictly limited 

to single-precision with absolute errors being larger than 

1 x 10-7 in general8. For more accurate evaluations of the 

functions, more rigorous rational approximations with higher 

degree polynomials9 or approximations with several types of 

truncated series expansions for the function10 have been 

employed. Reports on the evaluation and analysis of the 

function expU^erfcfx) have previously appeared in several 

journals11-14. Oldham's report12 on an algorithm which is 

suitable for a microcomputer is based on a combination of 

several types of expansions including a continued fraction 

expansion of the function. Commercial software packages 

are also available for mainframe-computers15 and also for 

microcomputers16. However, all previous reports and the 

commercial packages for the functions are strictly limited to 

lower precision (double or below), and they are not suitable 

for computations requiring high accuracy for the functional 

values. Thus, the aims of this paper are (a) to present an ef

fective algorithm for the evaluation of the function beyond 

double-precision to quadruple-precision with 32 decimal sig

nificant figures, and (b) to apply the algorithm to calculate 

theoretical values of derivatives for a chemically coupled 

electrode process (CE-type) then analyze the asymmetry 

found in derivative peaks to extract thermodynamic and 

kinetic information on the CE system. The algorithm is 

primarily for main-frame computers where the word length 

is larger (64 bits or above), but it will be suitable for future 

microcomputers since microcomputers with 64-bit devices 

do not seem too far away to advent.

Precision of experimental polarograms is limited typically 

to a half precision (3-5 significant decimal figures) as in most 

of other common scientific measurements. It has been well- 

known that differentiation of such experimental data is a 

noise-enhansing procedure by its nature; this raises a serious 

question about how peractical the derivative approach can 

be. However, recent microprocessor-controlled commercial 

electrochemical instruments (from such companies as EG & 

G Princeton Applied Research, Bioanalytical Systems, Inc., 
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IBM, and Cypress Systems, Inc.) or similar types of instru

ments provide better signal-handling capabilities (such as 

signal-averaging, signal-smoothing and differentiation); 나｝e 

digital signal output enables one to obtain the derivative pola- 

rogram/voltammogram with a good signal-to-noise (S/N) 

ratio more easily than those obtained with analog inst

ruments in earlier days. Examples of first and second 

derivative polarograms obtained from such a digital instru

ment (BAS 100) can be found from references (2) and (3), in 

which the derivatives are generated from a numerical 

differentiation coupled with a moving-window-average 

method, although the derivatives are somewhat distorted 

from true derivatives. The distortion of signals can be elim

inated if the software is improved3. In this studies2, three 

different types of digital-filtering methods ", the mov

ing-window-average method (MWM), the Savitzky-Golay 

method (SGM, a floating least-squares method) and a fast 

Fourier transformation method (FFT) are compared; the 

SGM with a multiple pass appears to be more satisfactory 

than the MWM in obtaining second derivatives because sig

nal distortions with the SGM is much less than those with the 

MWM. Details of the studies is presented elsewhere2. 

Future development of algorithms for the smoothing/dif- 

ferentiation method should yield noise-free 난血너 derivatives 

if noises are not too high (noises being less than 1% of a 

signal).

Methods

The evaluations of the function are based on the three 

types of series expansions of the function which have been 

commonly used10 for more rigorous treatments of the func

tion. It utilizes a power series expansion for lower values of 

arguments, an asymptotic expansion for higher values of ar

guments, and an continued fractional expansion for mode

rate to higher values of the argument. In principle, the algori

thms are similar to those used to evaluate the series to lower 

precision. However, the range of valid arguments for the 

three forms of expansions for required precision, and the ex

tent of summations or inclusions of fractional terms for the 

expansions should be very different from those for lower 

precisions.

The power series for smaller arguments10 is

exp(x2)erfc(x)

=exp(%2)[l 一 2力r i/허)exp( — x2)

见 <2"/1-3- •••(2，z+l)WE]

=exp(x2) - (2/力 1/2)[x+(2/3)x3+(4/15)x5

+(8/105)%’+…] (i)

The asymptotic expansion for larger arguments17,10 is

exp(xJ)erfc(%)

=[l/(^1/2x)] £ K2n-l)!!/(-2x2)nJ 

n=o

= [l/(^1/2x)][l-l/(2x2)+3/(4x4)-15/(8%5)

+ 105/(16 尤 A …] (2)

Table 1. Number of Terms Required in Each Expansion to Meet 

the Precision at Selected Values of the Argument

Precision

(Digits) Eqn.⑴

x=1.5

(3) (2)

x = 6.0

(1) (3) (2)

x=10.0

(1) (3) (2)

Half (3-4) 13 12 - 108 3 3 _ 3 3

Single (7-8) 17 32 - 115 8 12 - 4 5

Double (16) 25 105 - 129 14 35 一 10 11

Triple (24) 30 193 - 130 26 - 一 16 23

Quadruple (32) 38 374 - 130 40 - 一 24 41

The expression for the continued fraction expansion10 is

z n 、(2/2" 1 2 3
exp(x )erfcU)=2^r矛可矛牝 矛守…⑶

First, the efficiency of the three equations for the evalua

tion of the functions at the required precisions are examined 

in order to find a best algorithm that can minimize CPU time. 

This is done by checking how many terms are necessary for 

아】e evaluation at a requried precision level for each expan- 

si어! at selected values of the argument. Typical results at 

several selected value옹 of the arguments are summarized in 

Table 1. As in the case for lower precision, eqn. (1) is most 

effective at a small argument (x= 1.5) for higher precision as 

w에. For example, eqn. (1) is approximately 10 times faster 

than eqn. (3) for quadruple precision since it needed to sum 

。디y the first 38 terms to reach the required precision with 

eqn. (1) as compared to needing the first 374 terms with the 

eqn. (3). Eqn (2) is totally inadequate to use at x= 1.5. At a 

moderate value of argument (x = 6.0), eqn. (1) is 나le most in

efficient because it needed as many as 108 terms just to at- 

tain half precision, although the required number of terms 

for higher precision does not increase very rapidly (e.g, 130 

terms for quadruple precision). Equations (3) and (2) are com

parably good for lower precision atx=6.0; however, only the 

continued fractional expansion (eqn. (3)) is a viable expres- 

옹ion at higher precisions for x = 6.0. At this value of x, 사le 

asymptotic expansion (eqn.(2)) is of no use for quadru

ple-precision, because the smallest absolute value of a term 

in the expansion never reaches 10-32 which is 나｝e error for 

the precision. At larger values of the argument (x= 10), both 

eqns. (2) and (3) are comparably efficient at levels of all preci

sion, while eqn. (1) is totally unsatisfactory at any precision.

Based on analyses which are similar to those above, 

ranges of arguments for which each equation can be effec

tively handled with the fewest terms for the various lev어s of 

preci않ion are searched, and the res니ts are given in Table 2. 

The values at the limits of the ranges of the argument are 

chosen so that number of terms included in both equations 

become comparable. For example, to triple-precision, both 

eqns (1) and (3) require 59 terms for x= 3.0; therefore x=3.0 

defines the range limit when determining which equation to 

choose. All other range limits were determined based on the 

similar criteria. Eqn.⑶ is not effective at moderate or large 

value옹 of the argument. On the other hand, eqn. (2) cannot be 

used for high precision at moderate values of the argument 

(5<x<8.6). Eqn. (2), however, is as effective as 나le eqn. (3) 

for larger values of the argument at any level of precision. 

The numbers in parentheses in Table 2 are the maximum



Exp(x2) erfcfx) for Higher Order Derivative Polarography Bull. Korean Chem. Soc., Vol. 11. No. 6, 1990 499

Table 2. Ranges of the Argument for which Each Equation is Effi

cient for the Evaluation of the Function at the Stated Level of Preci

sion. The Maximum Number of Terms Required at Particular 

Levels of Precision in Each Expansion is Given in Parentheses

Precision 

(# digits)

Relative

Error

Eqn. (1)

Power Series

Eqn. (3)

> Fractional

Eqn.⑵ 

Asymptotic

Half (3-4) 10-3-10-4 0VY1.5 1.5<r 3.5<x

(13) (12) (12)

Single (7-8) 10-7-10-8 0<x<2.0 2.0V 4.5<x

(24) (21) (20)

Double (16) 10-16 0<x<2.5 2.5<x 8.5。

(40) (40) (14)

Triple (24) 10-24 0<x<3.0 3.09 10<x

(59) (59) (23)

Quadruple 1(尸 32 0<x<3.5 3.5<x 20<x

(32) (74) (82) (19)

number of terms used in the expansion for the given ranges 

of the argument at the particular lev이오 of precision. Values 

of the function are computed with 저n algorithm based on 

Table 2.

Typical results are presented in the following to 32 digits 

at several elected values of the argument ranging wid이y 

from IO'10 to 10 + 1°.

x exp(x2)erfc(x)______________________

10-10 : 0.99999999988716208330044874260963

10-5 : 0.99998871630832829262648294464597

10-1 : 0.89645697996912664193188374864404

1 : 0.42758357615580700441075034449057

2 : 0.25539567631050574386508858091080

10 : 0.56140992743822585857517387220468X 10니

10+5 : 0.56418958351954680777492305908892 x IO"5

10 + 1° : 0.56418964132077555819267566199529 x 10~10

The calculations described here were carried out on an IBM 

4381/3090 with VM/CMS operating system with an extend

ed precision (32 digits) mode. Plotting of the current-poten

tial curves and their derivatives (Figure 1, 2, and 4) are ac

complished by using the FPS plotting software with a Zeta 

836 high performance digital plotter (Nicolet). The thi■은e-di- 

mensional graphs (Figure 3) are generated with a software 

Surfer (Version 3.00, Golden Software).

Figure 1. (A) Normalized current and (B) its first derivative vs. potential curves for a 0% process with 1(尸斗 k广 10 + 7, «=2, and 

T= 298 K. Dots represent the results from single-precision computation; solid lines represent result from double-precision computation. (C) 

The second derivative and (D) the third derivative of the normalized current vs. potential curve옹 for the C，E, process: dot옹 represents results 

from double-precision computation, and solid lines represent quadruple-precision results. Data are presented in a potential ran으e from + 0.01 

V to -0.25 V. Data from the lower precision calculations in the anodic end ( + 0.05 to +0.01 V) of the potentials are not presented in the 

figures; but those data, with value 어】tside the plotting r죠nge，are the worst in fact in terms of error.
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F,S«re 2. (A) The Normalized current, (B) their first, (C) second, and (D) third derivative at various values of the forward rate constant (姊 at 

Keq= 10'4 for the CE-type of electrode process; h广 10斗"(a), 10~2 (b), 10~3 (c), IO'4 (d), and 10~5(e). Calculated for 7 = 298 K, t= 1.0 s, and 

M= 1.

Results and Applications

Evaluation of the function with above method is applied to 

the theoretical computation for the current-potential rela

tionship and its derivatives for a chemically-coupled elec

trode process. A reversible electron transfer reaction coupl

ed with a prior chemical equilibrium C^E^type electrode 

process) can be represented as follows:

y /' O Keq=[O\/[Y\=kf/kb(sa solution) (4)

O+ ne~--- aR Nemstian (at the electrode) (5)

Current (0 as a function of an applied potential (£) for this 

system under a linear diffusion condition can be given by the 

following equations (5, 18):

，그项[(混이시 exp 此他 ((1+e)/K“肋

erfc {{KM /2(l+e )/K“ V}] ⑹

where,让=wFAD1 C/(n Z),/2 (7)

g=exp[( nF/RT) (E~ £； _ 2)] ⑻

F is the Faraday constant, A is an area of an electrode sur

face, D is the diffusion coefficient of the species 0, C is the 

bulk concentration of Y and (), t is the time at which the cur

rent is sampled after application of the potential, and E% is 

the reversible polarographic half-wave potential of (). Ex

pressions for 반le current can be simplified by putting

x=(Kg%)L/2[(i+£)/K”]?/2 (9)

Then, i= /2{KeqAy)1 /2 exp(x2) erfc(%)] (1 이

An analytical differentiation of eqn. (10) with respect to the 

applied potential (E) gives

矿=很，次/」R7、)(2&/Se[(1+ g /Keo)i~ 1] (11)

Further differentiations of eqn. (11) yields second and third 

derivatives

矿‘‘= 사?7、)'(2必£)£ [(1+ E. /Keq)i

+人 7/汕(1+e/K“)矿一1] (12)

禮=2如尸(2 必 f)E[(l+4E/KQ)£+(2R77m

(1+2€〃命)矿+(时W(l+E/K“)i〃—L] (13)

From the expressions, current and its derivatives are cal

culated with values of Keq^ 10"3, kf= 10+ 7, n = 2 and 7'= 298 

K at various lewis of precision. Comparison of the results 

from single- and quadruple- precisions are given in Figure 1 

for the original current (A) and its first derivative (B). Solid
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Flgure 3. Three-dimensional plots of (A) the normalized current, (B) their first, (C) second, and (D) third derivatives as a function of potential 

and forward rate constant (柑 at = 10~4. The perspectives of the second (C) and third (D) derivatives are different from those of the zeroth 

(A) and first (B) derivatives, and it was chosen for a better view of the valleys present in the second and the third derivaties. Conditions are 

same as in Figure 3.

lines are from the quadruple-precision computation，and 

dots are from the single-precision. There are not 저ny signifi

cant differences in the original currents (Figure 1A) for the 

results using the two lev이s of preci동ion However, the sin

gle-precision computation did not produce a satisfactory 

result for the first derivative of the anodic half of the peak 

(Figure IB). The single-precision computations is totally 

unable to produce a satisfactoy second and third derivatives. 

In other words, the single-precision computation yielded er

roneous results for the first, second and third derivatives 

when _v>800, 工〉20, and ,r>ll, respectiv이y. With a 

double-precision computation the second and third deri

vatives become erroneous for ,v>8,000 and -<>300 respec

tively, which is usually the case when larger values of Ay is 

employed in the anodic end of the potential range. It should 

be pointed out that errors arise from the terms in으ide the 

brackets in eqn. (11)-(13), which inevitably involve 

round-offs during the subtraction Any dots with values 

outside the plotting scales (for example, 0.0-24.0 for Figure 

IB) on y-axis of the figures are forced to be located at the rim 

of the figure boxes for the calculation with lower precisions. 

Therefore, the actual errors are much larger than those 

which appear in the figures. In general, the more anodic 

(positive) the potentials are, the larger the errors are, 

although it does not appear so from the fig니re; namely, er

rors appear largest in the middle (-0.01 to -0.04 V) of the 

anodic side of the potential range. This is because data are 

presented only in the potential range but from +0.01 to 

-0.25 V, not from +0.05 to -0.25 V. It lo이is that it is er

ror-free in the range from + 0.05 V to + 0.01 V; but, in fact, 

this anodic end is the worst range in terms of error. Figure 

1C and ID depict the second and the third derivatives under 

the same conditions at two lev이s of precision. Solid lines are 

from the quadruple-precision computation and dots are from 

a double-precision computation for the same system. Please 

note the heavy scattering of the points at the anodic branches 

of the two curves. As the system becomes i•이atively slower 

(”/V10+4), the errors due to the use of lower precision dimi

nish. The evaluation is not successful with the dou

ble-precision especially in the anodic branch of the third 

derivative because the val나es of the argument of the function 

in the potential range become so large Cv>500). A very 

similar type of the error for derivative-potential curves is 

also observed with another kinetic system2"7, M., a
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Figure 4. (A) Normalized current-potential curves, (B) its first, (C) second, and (D) third derivatives for a reversible electron transfer reaction 

(solid lines) and for 나le CE-type reaction (dots). Graphic representations for various parameters are also given. Potentials are with respect to 

the formal potential, E。, hence £1/2- Calculated for T= 298 K, and t= 1.0 sec.

quasi-reversible process with higher values of the transfer 

coefficient (a>0.8): the errors for this system can also be cor- 

rected by using 나le high precision level computation. Details 

of the study on the quasi-reversible and irreversible systems 

will be presented elsewhere2,7.

The current 거，a function of the potential and the forward 

rate constant (力丿)at a given value of the equilibrium constant 

CK绍=10")for the homogeneous chemical step are depicted 

in Figure 2. A three-dimensional view of the graphs are pre

sented in Figure 3 for a better overview of picture. The deri- 

vatives can be analyzed in terms of various parameters as de- 

fined in Figure 4. The parameters defined are various 

peak-potentials (E；s), peak-heights ("s), and half-peak 

w너th옹 ( 吼'时: the numeric superscripts in 하】e parameters 

stands for an order of the differentiation, while 나记 alphabetic 

superscripts m, and c) stand for anodic, middle, and 

cathodic, respectively. Close examinations of the derivatives 

reveals symmetry associated with the peaks for the CE sys- 

tem- The presence of 한此 asymmetry is not too apparent in 

the zer아h (Figure 2A and 3A), first (Figure 2B and 3B), and 

second derivatives (Figure 2C and 3C); but it is readily 

noticeble in the third derivative (Figure 2D and 3D), namely, 

the anodic-peak-currents (彦) are higher 사lan the 

cathodic-peak-currents (修气 The analysis of lower order (the 

first and second) derivatives for the(二，与 process is already 

presented elsewhere3. In this work, analysis of 산le third 

derivative will be presented bacause the asymmetry found 

in the third order derivative is more pronounced and more 

sensitive to kinetics than that found in the second- and 

lower-order derivatives.

Analyst of Peak-Potentials and Their Separations. 
Figure 5A 아gws a plot of three peak-potentials (E* 噂 

거nd E# of the third derivatives as a function of Zyat the two 

different values of Ke(J (10~2 and IO'4). All three peak-poten- 

tials shift towards positive direction as the value of the for- 

ward rate constant increases, which is the same trend as 

observed for the peak-potential of the first and second 

derivatives. Separation of the peak-potentials, (Ef- 

玲),(£笋環허), and (E*처~£片), are presented in Figure 5B. As 

나le forward rate constant of the prior chemical step becomes 

smaller, they decreases from the values of the simple reversi- 

ble electrode process.(号-玲 decreases from 118 mV to 90 

mV exhibiting most changes (28 mV), while (E*七簡5 

decreases from 59 mV to 51 mV exhibiting least changes (8 

mV). (£*-£*) decreases from 59 mV to 41 mV with a net 

change of 18 mV. It should be noted that the change 

associated with the anodic branch (E尸一蹬)is more sensitive 

to than that with the cathodic branch〈E告聆.

Analyst 의 Peak-Heights. Three peak-heights (曾 

ip, and ") for 버。third derivatives are normalized with 

respect to values of three peak-heights for the reversible 

process, 나is plotted against 1。氛/?丿) in Figure 6A. All three 

peak나leights decreases as the forward rate constant de- 

creases for all values of Keif which is an analogous behavior 

t。that of 한此 second and first derivatives. The normalized an

odic-peak-heights are always larger than the cathodic ones.
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Figure 6. (A) Effect of the forward rate constant, Ay, on the heights 
of the anodic, middle, and cathodic peaks (铲, 心허, and at two dif

ferent values of the equilibrium constant. Values of the heights are 

normalized with respect to those of the reversible cases. Conditions 

are same as in Figure 5. (B) Effect of 为 on the various ratios of the 

peak사}eights 媛/彦, 鄙铲，and 覺%沙 

Figure 7. Effect of the forward rate constant, kf, (A) on the anodic, 
middle, and cathodic half-peak-widths (Wi^, 0영", and l磴) of the 

third derivative, and (B) on their counterparts normalized against 

their reversible values at the two different values of the equilibrium 

constant. Conditions are same as in Figure 5.

Therefore, the ratio of the anodic-to-cathodic peak-heights 

are always larger than 1. Three ratio of the peak-heights 

(namely, if/if,以％；气 and 球％*) as a function of Ayare given 

in Figure 6B for the two values of the equilibrium constant. 

As k, decreases, the ratio of the anodic-to-cathodic 

peak-height increases from the reversible value of 1.0 to 

1.35: this 35% change the ratio is substantial enhancement 

from 25% change in the ratio observed from the second deri

vative at the same condition3. It is interesting to note that the 

ratio of the anodic-to-middle peak-height increases from 

the reversible value of 0.32 while that of the catho- 

dic-to-middle peak-height decreases.

Analysis of Half-Peak-Widths. Absolute value of 

three half-peak-widths 用*”，and l磴)for the third 

derivatives as a function of log(/?,) is presented in Figure 7A. 

All three peaks become sharper as decreases. The anodic 

(W*) and cathodic (W*) half-peak-wklth decrease from 54 

mV to 42.5 mV and 50 mV respectively, while the middle 

half-peak-widths (W辭)decreases from 41.2 mV to 35 mV. 

The anodic-half-peak-widths become sharper than the 

cathodic ones. The absolute values of the half-peak-widths 

are normalized against those of their reversible counterparts, 

and the results are given in Figure 7B. The anodic half

peak-width exhibits most changes (by 22%), while the 

cathodic half-peak-width produce least changes (only by 

8%) from the reversible value of unity. The middle one 

shows about 15% decrease. The various ratios of the 

half-peak-widths (i.e., </1嚟 W^l 0싸”, and W*/ 喝") 

are presented in Figure 8. As kj decrease, the catho- 

dic-to-anodic half-peak-width increases to a limiting value 

of 1.17 from 1.00 (the reversible value). The anodic-
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Figure 8. Effect of the forward rate constant,拍 on the various 

ratios of half-peak-widths (W^, 0當/磴,and at

two different values of the equilibrium constant. Conditions are 

same as in Figure 5.

Table 3. Comparison of Values of Various Diagnostic Parameters 

for the Reversible, CE and EC Processes for 7'= 298 K, and = 1.0 

sec

Parameters Reversible CrEr Process EQ Process

Original current

=0.0 mV <0.0 mV >0.0 mV

E%~E* = 56.4/n mV <56.4/n mV < 56.4 mV

1st derivative

E厂E。 = 0.0 mV <0.0 mV >0.0 mV

= 9.7 <9.7 >9.7

= 90.5/nmV <90.5/n mV <90.5/n mV

胃/阿 = 1.0 <1.0 >1.00

2nd derivative
畛-畛 = 68.0/n mV <68.0/n mV

= 1.0 >1.0 <1.00
w^-w^ = 1.00 <1.0 >1.00

3rd derivative

= U8/n mV <118/n mV <118/n mV

E*-E紀 그 59/n mV <59/n mV <59/n mV

E沪-醪 =59/n mV <59/n mV <59/n mV

谭-详 = 1.00 >1.00 <1.00

详 = 0.32 >0.32 <0.32

= 0.32 <0.32 >0.32

W^-W^ = 1.00 <1.00 >1.00

脣f瑙 = 1.31 <1.31 >1.31

E終璋 = 1.31 >1.31 <1.31

to-middle half-peak-width decreases to 1.21 from 1.31, 

while cathodic-to-anodic half-peak-width increase 1.43 

from 1.31 that is the value for the reversible process. It 

should be pointed that relative changes in the cathodic- 

to-anodic half-peak-width for the third derivative is more 

than that for the second derivative although their behavior is 

similar.

In general, the effect due to the coupled kinetics on the para

meters are more sensitively reflected in the third derivative than 

in the loicer-order (namely, second and first) derivatives. As 

observed in the second derivative, all parameters associated 

with the anodic peak (&*', if, and 甲留)are more strongly in

fluenced by the preceeding homogene ous chemical step than 

their cathodic counterparts 端 and Comparisons 

of various diagnostic parameters from all derivatives are 

made and summarized in Table 3 for the reversible, the 

CE-type, and EC-type processes". Values of many 

parameters (such as ratios of peak-heights, and ratios of 

half-peak-widths) of the CE-type process change from the 

reversible values in opposite direction to the values for the 

EC-type process, although some parameters (meh as peak

separations) changes in a same direction for both CE and EC 

processes. In other words, the anodic-to-cathodic peak

height ratio for the CE-type process is less than one (the 

reversible value), while that for EC-type process is larger 

than one. However, a peak separation exhibits a

same behavior for both CE- and EC- type processes becom

ing less than 118/n mV which is for the reversible process. 

Therefore, all the peak-current ratios and half- 

peak-width ratios can be used as diagnostic parameters for 

distinguishing a CE from an EC mechanism because they ex

hibits opposite behaviors, while the various peak-separations 

cannot be used for the diagnostic purpose because they 

change in a same manner.
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Enhanced Electrogenerated Chemiluminescence of Tris (2,27-bipyridyl) 
Ruthenium (II)-S2O82- System by Sodium Dodecyl Sulfate

Sung Chui Kang, Sooll Oh, and Kang-Jin Kim *

Department of Chemistry, Korea University, Seoul 136- 701. Received April 25, 1990

The electrochemical reduction and electrogenerated chemiluminescence (ECL) of Ru(bpy)32+-S2O82- in CH3CN-H2O solu

tion were studied in the presence of sodium dodecyl sulfate (SDS) as an anionic surfactant. SDS enh제iced the ECL and the 

fluorescence intensities and lengthened the duration of ECL due to the solubilization of reactants and possibly to the stabiliza

tion of ECL intermediates in the SDS micellar environment.

Introduction

Interests in the electrogenerated chemikiminescence 

(ECL) of tris(2,2,-bipyridyl) rutheniiim(ll)(Ru(bpy)32 + ) in 

aq니eous or acetonitrile-water solutions have been increasing 

rapidly since Ru(bpy)32+ as an ECL label can be 니sed to 

determine low concentrations of biologic지ly important com

pounds.1,2 In particular, the ECL mechanism of Ru(bpy)/* 

-S2O82- system in acetonitrile-water sokition estabilished 

recently by White and Bard are based on the following reac- 

tion sequence.

Ru(byp)3 ++e~ Ru(bby)： ⑴

Ru(bby)J+S2Or -* Ru(bpy)，+SO：+SO厂 ⑵

Ru(bpy)：+SO； - Ru(bpy)；+*+SO「 ⑶

Because Ru(bpy)3+ is unstable in aqueous sol니tions and

S2O82- has a low solubility in CH3CN solutions3, 버e 

CH3CN-H2O mixed solutions are 니sed to produce intense 

ECL emission.

Electrogenerated reactive intermediates are often stabi* 

lized in micellar media on the reductive electrochemical 

system. For example, Saveant et 시.* have reported a remar

kable stabilization of the electrogenerated anion radical of 

phthalonitrile in the presence of cationic mic이les and sug

gested that the observed 250 fold decrease in the rate of pro

tonation of the anion radical was d니e to its association with 

the positively charged micelles. On the other hand, Blount et 

a I.-1 found that anionic micelles in the presence of LiCl elec

trolyte were capable of stabilizing the nitrobenzen anion 

radical to the point where it become detectable by cyclic 

voltammetry at 5() mV/sec.

Recently, Ouyang and Bard6 examined the oxidative 

electrochemistry and ECL of C)s(bpy)32 + , and s나gg은sted that 

Os(bpy)： + interacted most stron이y with anionic mickles, 

and both the electrochemical response and ECL in the pre

sence of oxalate were suppressed. Bard and coworkers7 had 

previously shown that the anionic mic이les associated more 

stron이y with methylviologen cationic radical(MV-+) than the 

dication (MV2+) form and Ru(bpy)32+ is b。니nd into Nafion 

more strongly than Ru(bpy)33+. Their results were explained 

by the hydrophobic interactions between the given substrate 

and the micellar hydrocarbon core or the nonpolar regions of 

Nafion.

However, micellar systems have not been utilized for the 

ECL of Ru(bpy)/+-S2O82- system, although there are some 

reports concerning the CL improvements of lucigenin in 

mic이le solutions.8,9 Therefore, in this paper we attempt to 

describe the effect of sodium dodecyl sulfate (SDS) as an 

anionic surfactant for the purpose of enhancing the ECL effi

ciency of Rii(bpy)32+-S2O82~ system. Possible crises of the 

enhancement are dismissed.


