Cited by
- Nuclear and radiochemical analysis vol.64, pp.12, 1990, https://doi.org/10.1021/ac00036a001
DOI QR Code
Fifty eight obsidian artifacts and four obsidian source samples have been analyzed by instrumental neutron activation analysis. Artifact samples have been classified into classes by unsupervised learning techniques such as eigenvector projection and nonlinear mapping. The source samples have thereafter been connected to the classes by the supervised learning techniques such as SLDA and SIMCA so as to characterize each class by possible source sites. Some difference attributable to different nonlinear mapping techniques and the elemental effects on the separation between classes have been discussed.