Notes

Solvent-Dependent Circular Dichroism Spectra of trans-Dichlorobis (S,S-1,3-diphenyl-1,3propanediamine)cobalt(III) Complex

Chang Eon Oh ' , Doo Cheon Yoon, and Sung Yeoul Park
Department of Chemistry, Yenngnam University, Gvongsan 713-749

Yang Kim and Man Kil Lee

Department of Chemistry, Kosin University, Pusism 606-080
Received December 29. 1989

The solvent dependence of circular dichroism(CD) spectra has been reported for many optically active metal complexes ${ }^{1-4}$. In a previous paper ${ }^{5}$, we showed that the CD spectra of optically active [Co(acac) (diamine)] ${ }^{+}$complexes were sensitive to the type of organic solvents. where acac is acetylacetonato antion and diamine is ethylenediamine or trimethylenediamine. The Cl) spectra of $t r a n:-\left[\mathrm{Col}_{2} \mathrm{X}_{2}\right]^{1+}$ complexes were also reported in a large number of sotvents. where $/$ is ($/ k^{\prime}$)-propane-1,2-diamine $\left(K^{\prime}-\mathrm{pn}\right)^{1}$ or ($K^{\prime \prime}$)-1-phenylethane-1, 2 -diamine ${ }^{2}$ and X is $\mathrm{Cl}^{+}, \mathrm{Br}^{-}$, or NH_{3}. Among these the dihalo complexes showed a preferential solvation rim hydrogenbond formation with the equatorial $\mathrm{N}-\mathrm{H}$ protons of chiral cliamine ligands $(\mathrm{L})^{1.2}$.

In this study, we have studied the effect of counteranions upon the solvent-dependent (D) spectra of trom:-[ColS.s$\left.\mathrm{dppn}_{2} \mathrm{Cl}_{2}\right]^{+}$complexes in a number of organic solvents. where $S . S$-dppn is S, S-1.3-diphenyl-1,3-propanediamine.

Experimental

Optically active ligand dppn and complexes were prepared and characterized according to the literature ${ }^{i}$. Circular dichroism spectra were measured with a JASCO J-500C spectropolarimeter. All the solvents were of analytical grade and used without further purification.

Results and Discussion

The CD spectra of the complexes, trans-[CO(STS-dppn) $)_{2}^{-}$ $\left.\mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ and trans-[Co(S.S-dppn) $\left.)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$, in some solvents are shown in Figures 1 and 2 . The patterns and intensities of CD spectra for the two complexes are somewhat different. The CD spectra of the chloride complex in some solvents (acetonitrile, benzonitrile. and acetone) bear no resemblance to those of the perchlorate complex.

Furthermore, the patterns of the solvent-dependent CD spectra of both complexes at about 540 nm are somewhat different when the counteranions of the complex are different. The CI) spectra of trons-[CO(S,S-dppn) $\left.)_{2}(]_{2}\right](7)_{4}$ complex have one isodichroic point at 545 nm (Figure 1), while trans$\left[\mathrm{Co}(\mathrm{S} . \mathrm{S}-\mathrm{dppn})_{2} \mathrm{Cl}_{2} \mathrm{Cl} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right.$ complex does not (Figure 2). Since the complex cation and solvents used are the same. the

Figure 1. Cll spectra, tran:-[Co(S. 5 - $\left.\left.\mathrm{dppn}_{2}\right)_{2} \mathrm{Cl}_{2}\right]_{\mathrm{ClO}}^{4}$ in methanol (-), in acetonitrile (\cdots), in benzonitrile $(\cdots \cdots)$, in nitromethane ($-\cdots$), and in tetrahydrofurane ($-\cdots \cdots$).

Figure 2. CD) spectra, trons-[Co(SSS-dppn $\left.\left.)_{2} \mathrm{Cl}_{2}\right]_{\mathrm{Cl}}^{4}\right)_{4}$ in methanol ((000) and trans-[$\left.\mathrm{Co}(S . S-\mathrm{dppn})_{2} \mathrm{Cl}_{2}\right] \mathrm{CH} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ in methanol (-), in acetonitrile $(--)$, in benzonitrile ($\cdots \cdots$) in nitromethane ($-\cdots-$), in dimethylsulfoxide $(\cdots \cdots)$, and in acetone ($\cdots \cdots \cdot($.$) .$
difference in the spectra of the two complexes may be attributed to different counteranions.

The above results may be an indication of the difference in the degree of ion-association between the complex cation and counteranion in organic solvents. Hawkins et al. ${ }^{1}$ reported the solvent-dependent CD spectra of $t r a n s-\left[\mathrm{Co}\left(R_{-}\right.\right.$ $\left.\mathrm{pn})_{2} \mathrm{X}_{2}\right]^{\mathrm{K+}}$ complexes and concluded that ion-association with counteranions of complex is more important than the stereoselective solvation in the dihalo complexes. It has also been reported ${ }^{7}$ that the ion-association constant between complex and counteranion in dipolar aprotic solvents increase in order of counteranions: $\mathrm{ClO}_{4}^{-}<\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}$. The perchtorate anion is not a hydrogen-bond acceptor and the perchlorate complex is completely dissociated in dipolar aprotic solvents ${ }^{7.8}$. Since the completely dissociated species are present in solution, it seem that the perchlorate complex has one isodichroic point at 545 nm (Figure 1).

However, since the chloride complex is formed w in strong ion-association between complex and counteranion $\left(\mathrm{Cl}^{-}\right)$, it seems that this complex is partially dissociated in organic solvents. Thus, the dissociated and associated species can coexist in solution. When different species coexist in solu-
tion, it is supposed that the intensity and the pattern of CD spectra can be different in a certain absorption band region and hence no isodichroic point. Thus, for the chloride complex, it seems that the observed irregular CD changes at about 540 nm are attributed to coexistance of the dissociated and associated species.

Acknowledgement. This work was financially supported by the Basic Science Research Institute Program administered by ministry of Education of Korea in 1988.

References

1. C. J. Hawkins, G. A. Lawrance, and R. M. Peachey, Aust. J. Chem., 30, 2115 (1977).
2. C. J. Hawkins and M. L. McEniery, ibid., 32, 1433 (1979).
3. S. Kaizaki, Bull. Chem. Soc. Jpn., 56. 3625 (1983).
4. U. Sakaguchi, H. Nakazawa, K. Sakai, and H. Yoneda, ibid. 55, 1862 (1982).
5. Y. Kim and C. E. Oh, Bull. Korean Chem. Soc., 8, 441 (1987).
6. S. Arakawa, K. Kashiwabara, J. Fujita, and K. Saito, Bhll. (hem. Soc. Jon., 50, 2108 (1977).
7. H. Nakazawa, U. Sakaguchi, H. Yoneda, and Y. Morimoto, /norg. Chem. 20, 973 (1981), and reterences therein.
8. W. A. Millen and C. W. Watts, Aust. J. Chem. 19. 43 (1966).

Organocobalt(III) Complexes of the Tetraazamacrocyclic Ligand, $\mathrm{C}_{32} \mathrm{H}_{\mathbf{2 6}} \mathrm{N}_{\mathbf{4}}{ }^{\mathbf{2 -}}$ (I)

Young-ae Whang Park

Department of Chemistry, Sang Myrng Women's University, Seorl 110. Received Murch 16, 1990

A major factor affecting $\mathrm{Co}-\mathrm{C}$ bond stability in Organocobalt(III) B_{12} models as well as cobalamins appears to be the coordination number. Most of the low spin d^{6} cobalt(III) complexes are 6 -coordinate with octahedral or pseudooctahedral structures, but 5 -coordinate organocobalt(III) species have been suspected to exist either as reactive intermediates in ligand-exchange reaction or, less commonly, as relatively stable species. ${ }^{1-3}$ However, the evidence for ${ }^{5}$-coordinate cobalt (1II) species is not clear. In connection with the research program toward the investigation of the effect of bases as the sixth ligands on the stability of $\mathrm{Co}-\mathrm{C}$ bond in organocobalt(III) species, this paper reports on the chemistry of 5-coordinate organocobalt (III) complexes of completely conjugated dianionic macrocyclic ligand (L), 5,14-dihydro-6.15-dimethyl-8,17-diphenyldibenzo[b,i] [1,4,8,11] tetraazacyclotetradecinate.

As a starting material, $\mathrm{Co}(\mathrm{II}) \mathrm{L}$ was prepared by the addition of methanol solution of cobalt(II) acetate tetrahydrate to a solution of the ligand in DMF followed by 30 minutes reflux and obtained as a greenish brown crystal. The compound is air sensitive even in the solid state. The structure of $\mathrm{Co}(\mathrm{II}) \mathrm{L}$ determined by elemental analysis (Table 1), magnetic mo-

Table 1. Analytical Data for the Cobalt Complexes

Compound	Calcd, \%			Found, \%		
	C	H	N	C	H	N
$\mathrm{CO}\left(1 \mathrm{IL} . \mathrm{H}_{2} \mathrm{O}\right.$	71.9	5.05	10.5	72.2	4.92	10.5
$\mathrm{CH}_{3} \mathrm{Co}(1 \mathrm{II}) \mathrm{L}$	73.3	5.37	10.4	72.1	5.37	10.4
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Co}$ (III)L	75.7	5.15	9.30	74.9	5.10	9.34
$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Co}(111) \mathrm{L}$	65.9	3.76	8.09	66.3	4.12	8.28

Table 2. Electronic Spectral Data for RCol Complexes in the Range $16,000-30,0,00 \mathrm{~cm}^{-1}$

Compound	Solvent	Absorption in $\mathrm{cm}^{-1}(\epsilon)$
CoI.	CHCl_{3}	$27,80(47,400), 16,700(4,810)$
$\mathrm{CH}_{3} \mathrm{CoL}$	CHCl_{3}	$27,030(7,970), 23,810(3,910), 16,620(2,540)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CoL}$	CHCl_{3}	$27,970(9,440), 23,120(5,000), 15,870(930)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CoL}$	CHCl_{3}	$27.780(31,240), 22,990(6,650)$

Table 3. Proton NMR Spectral Data for RCoL ${ }^{a}$

"Chemical shifts in ppm from internal 'TMS. Measured in CDCl_{3}. s: singlet, m: multiplet.
ment (2.33 B.M.), IR spectrum and electronic spectrum is regarded as a 4-coordinate square planar complex which the macrocyclic ligand acts as a tetradentate chelating agent lying in the equatorial plane.

Five-coordinate organocobalt (III) complexes, RCo(III)L (where $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{~F}_{5}$), were prepared similarly to that described for the synthesis of (py)Co(III) (salopha)(R) ${ }^{1}$. These green organocobalt complexes are also gradually decomposed in the air. The infrared spectra of these complexes show the change in the $\mathrm{C}=\mathrm{N}$ stretching mode of the ligand, which enables us to distinguish between the coordinated and the free ligand. The absorption band for $\mathrm{C}=\mathrm{N}$ of the free ligand which appears at $1613 \mathrm{~cm}^{-1}$ with very strong intensity is shifted to the lower frequency region with decreased intensity; $1571 \mathrm{~cm}^{-1}$ for $\mathrm{CH}_{3} \mathrm{CoL}, 1570 \mathrm{~cm}^{-1}, 1570 \mathrm{~cm}^{-1}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CoL}$ and $1575 \mathrm{~cm}^{-1}$ for $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CoL}$. This result indicates that the ligand is coordinated through for nitrogen atoms to the metal. Visible and ultraviolet spectral data covering $16,000-40,000 \mathrm{~cm}^{-1}$ range are shown in Table 2.

These absorption bands are assigned to $\pi-\pi^{*}$ transitions within the ligand molecule and charge transfer transitions from metal to ligand since they have larger extinction coefficients ($10^{3}-10^{4} \mathrm{~mol}^{-i} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$) than expected for ligand field transitons. ${ }^{4}$ Five coordinate organocobalt (III) complexes are known to show a band at $-440 \mathrm{~nm}^{5}$. Indeed, the $\sim 430 \mathrm{~nm}$ band has been observed in chloroform in all the complexes of this work. This particular band is attributed to the intramolecular CT transitions for which the $\mathrm{Co}-\mathrm{CH}_{3}$ bond is

