C-H Bond Activation of Aldimine by Rh(I) : New Synthesis of β, γ-Unsaturated Ketone from Aldehyde through Iminoacylrhodium(III)- η^{3}-allyl Complexes

Chul-Ho Jun

Agency for Dejense Development, Taucicon 300-600
Received February 14, 1990
$\mathrm{C}-\mathrm{H}$ bond activation by transition metals has been one of the recent interests in organometallic chemistry ${ }^{1}$. The hydride generated by $\mathrm{C}-\mathrm{H}$ bond activation of 8 -quinolinecarboxaldehyde by $\mathrm{Rh}(\mathrm{I})$ inserts into the coordinated olefin or diolefin to form acylrhodium(III) alkyl ${ }^{2}$ or acylrhodium(III) $\eta^{t}-, \eta^{3}$ - allyl complexes ${ }^{3}$, which are reductive-eliminated to give alkyl ketones or β, γ-unsaturated ketones respectively. It has been reported that $\mathrm{C}-\mathrm{H}$ bond activation of the aldimine by Wukinson's catalyst generated iminoacylrhodium(III) hydride complex ${ }^{4}$. This Rh -hydride hydrometallates the olefins to form iminoacylrhodium(IID) alkyl complex as an intermediate, which was easily reductive-eliminated to give ketimine. The ketimine is a potential precursor for ketone since hydrolysis of ketimine produces ketone. One of the advantages on the synthesis of ketones by $\mathrm{C}-\mathrm{H}$ bond activation of aldimate is that 2-amino pyridine group used as a cyclometallation tool can be easily eliminated by hydrolysis. This report describes new synthesis of β, γ-unsaturated ketimine from aldimine by $\mathrm{C}-\mathrm{H}$ bond activation through iminoacylrhodium(III) η^{3}-alkyl substituted allyl complexes: synthesis of β, γ-unsaturated

Scheme 1. Synthesis of β, γ-unsaturated ketones from benzaldehyde through iminoacylrhodium(III)- η^{3}-allyl complexes.

Figure 1. ${ }^{13} \mathrm{C}$ NMR spectra of η^{2}-anti-1-methylallyl group in 7a.
ketones from aldehyde.
The compound 1,3 -methyl-2-aminopyridyl aldimine was prepared by the reaction of benzaldehyde and 3-methyl-2aminopyridine in THF at reflux in the presence of $3 \AA$ molecular sieves (Scheme 1). Also 3a was prepared in situ by the reaction of bis(cyclooctene)rhodium(I) chloride, 2 and 1,3 -butadiene at $0^{\circ} \mathrm{C}$ for 5 min during which time reddish yellow solution turned into yellow ${ }^{5}$. To a solution of $3 \mathfrak{a}$ in THF was added the aldimine, 1 and the resulting solution was heated at $55^{\circ} \mathrm{C}$ for 10 min to give a yellow solution. After cooling the reaction mixture and addition of pentane, a yellow precipitate was filtered, and dried in vacuo. This solid complex was hard to be characterized due to insolubility of its dimeric (or polymeric) species since its monomeric complex of 5 a seems to dimerize (or polymerize) to make an 18 electron complex ${ }^{3 a}$. It is not clear whether $5 a$ is dimeric or polymeric species. Addition of Br_{2} to 5 a in CDCl_{3} gave 1,2,3tribromobutane identified by ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{3 a}$. The product, 5 a was solubilized in CDCl_{3} by addition of a few drops of pyridine $-d_{5}$, giving the monomeric 5 -coordinate imino-acylrhodium(III)- η^{3}-anti-1-methylallyl complex, $7 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.4(\mathrm{~d}, \mathrm{~J}=5.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ of $\mathrm{C}-2$ in picoline), $7.6-7.0(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Hs}$ of picoline and phenyl group), 4.2 (m, 1H, H of C-2 in η^{3}-allyl group), $3.7(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ of $\operatorname{syn}-\mathrm{H}$ of $\mathrm{C}-1$ in η^{3}-allyl group), 3.45 ($\mathrm{d}, \mathrm{J}=3.04 \mathrm{~Hz}, 1 \mathrm{H}$, syn-H of $\mathrm{C}-3$ in η^{3}-allyl group), $3.50(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, anti-H of $\mathrm{C}-3$ in ∇^{3}-allyl group), 2.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ in picoline), 0.5 (d, $\mathrm{J}=6.20 \mathrm{~Hz}, 3 \mathrm{H}$, anti- CH_{3} to $\mathrm{C}-1$ in η^{3}-allyl group); ${ }^{13} \mathrm{C}$ NMR ($50.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 147-120 (m, carbons of picoline and phenyl group), $109\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{Rh}-\mathrm{C}_{2}}=6.3 \mathrm{~Hz}, \mathrm{C}-2\right.$ of η^{3}-allyl group). 85 (d, $\mathrm{J}_{\mathrm{Rh}-\mathrm{C}_{1}}=10,12 \mathrm{H}_{2}^{2}, \mathrm{C}-1$ of η^{3}-allyl group), 52 (d. $\mathrm{J}_{\mathrm{Kh}-\mathrm{c}_{3}}=10.7 \mathrm{~Hz}, \mathrm{C}-3$ of 7^{3}-allyl group), 18.67 ($\mathrm{s}, \mathrm{CH}_{3}$ of picoline), 16.46 (s, C of anti- CH_{3} in η^{3}-1-methy)allyl group). The ${ }^{1} \mathrm{H}$ NMR chemical shift of anti-methyl group in 7a appears at 0.5 ppm as doublet ${ }^{6}$. Any $\eta^{3}-s y n-1$ methylallyic rhodium(III) complex was not observed in the reaction mixture differently from 8-quinolinyl acylrhodium (III) $-\eta^{3}$-1-methylallyl complexes consisted of $s y n$ - and antiisomers ${ }^{32}$. ${ }^{13} \mathrm{C}$ NMR spectra of η^{3}-1-methylallyl group in 7a is shown in Figure 1. The chemical shift of ${ }^{13} \mathrm{C}$ NMR spectra of the allylic carbons appears at $109,85,52 \mathrm{ppm}$ as doublet respectively. The position of the resonances for the meso carbon atom of the η^{3}-allyl transition metal complexes generally falls in the range $128-102 \mathrm{ppm}$, while those for the ter-
minal carbon atoms are found at $86-42 \mathrm{ppm}^{7}$. The three carbons in η^{3}-allyl group interact with the Rh metal having a nuclear $\operatorname{spin} I=1 / 2$, which splits each of allyic carbons as doublet. Complex 5 a is supposed to be formed from the $\mathrm{C}-\mathrm{H}$ bond activation of 1 by 3 a through an transient intermediate, 4a. The hydride in 4 a must be inserted into the coordinated 1,3 -butadiene to form $5 a$. There are some reports about the characterizations of the hydrides in $\mathbf{4}$ prepared from $\mathrm{C}-\mathrm{H}$ bond activation of aldimine by $\mathrm{Rh}(\mathrm{I})$ or $\mathrm{Ir}(\mathrm{I})$ complexes ${ }^{4}$. It is also reported that the hydride, generated from $\mathrm{C}-\mathrm{H}$ bond activation of aldimine ${ }^{4 a}$ or 8 -quinolinecarboxaldehyde ${ }^{2 a}$, must be inserted into ethylene to form the ethylrhodium(III) complexes when ethylene instead of triphenylphosphine in $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}$ is used. Reductive-elimination of 7a by trimethylphosphite at room temperature for 30 min gave $\beta, \gamma-$ unsaturated ketimine 8 a in 36% yield after chromatographic isolation. 8a: ${ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.25(\mathrm{~d}, 1 \mathrm{H}$, H of $\mathrm{C}-2$ in picoline), $7.4-6.6$ (brm, 7 H , aromatic Hs of picoline and phenyl), 5.3 (brs, $2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$), 3.4 (brs, 2 H , a-methylene to $\mathrm{C}=\mathrm{N}$ group), 2.1 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of $\mathrm{C}-3$ in picoline), 1.5 (brd, $3 \mathrm{H}, \mathrm{CH}_{3}$ to $-\mathrm{CH}=\mathrm{CH}$); IR(neat) 3020,2920 , $1635,1585,1445,1410,1230,1110,965,785,690 \mathrm{~cm}^{-1}$; TLC $\mathrm{Rf}=0.4$, hexane : ethylacetate $=5: 2, \mathrm{SiO}_{2}$.

Compound 8 a was hydrolyzed by washing with a mixture of 0.1 N HCl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and purified by column chromatography to give β, γ-unsaturated ketone 9 a in 82% yield. 9 a : ${ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.9-7.1(\mathrm{~m}, 5 \mathrm{H}$, phenyl group), $5.5(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$), 3.6 (brd, $2 \mathrm{H}, a-$ methylene to CO), 1.7 (brd, $3 \mathrm{H}, \mathrm{CH}_{3}$ to $-\mathrm{CH}=\mathrm{CH}-$); IR (neat) 3030 , $2920,1680,1450,1275,1210,965,760,690 \mathrm{~cm}^{-1}$; TLC Rf $=$ 0.69 , hexane:ethylacetate $=5: 2, \mathrm{SiO}_{2}$.

Same reaction was applied with piperylene (1,3 -pentadiene $)^{5 b}$ instead of 1,3-butadiene. Reaction of aldimine 1 and 3 b, prepared from olefin exchange reaction of 2 with piperylene (1,3 -pentadiene), afforded $5 \mathbf{b}$ through an intermediate $\mathbf{4 b}$. With addition of pentane, the complex $\mathbf{5 b}$ was isolated, and characterized by ${ }^{1} \mathrm{H}$ NMR spectra after dissolving in CDCl_{3} containing a few drops of pyridine- c_{5}. giving the imi-noacylrhodium(III)- $\eta^{3}-a n t i$, syn-1,3-dimethylallyl complex, 7b: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (ppm) $9.6(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, H of $\mathrm{C}-2$ in picoline), $7.7-6.8$ (m, Hs of picoline and phenyl group), $4.5\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{syn}-\mathrm{H}\right.$ in η^{3}-allyl group), $4.3(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ of $\mathrm{C}-2$ in η^{3}-allyl group), $3.5\left(\mathrm{~m}, 1 \mathrm{H}\right.$, anti-H in η^{3}-allyl group), $2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ in picoline), $1.2\left(\mathrm{~d}, \mathrm{~J}=6.27 \mathrm{~Hz}, 3 \mathrm{H}\right.$, syn- CH_{3} to n^{3}-allyl group), 0.6 (d, $\mathrm{J}=6.23 \mathrm{~Hz}, 3 \mathrm{H}$, anti- CH_{3} to $\eta^{3}-$ allyl group). The ${ }^{1} \mathrm{H}$ NMR chemical shift of anti- and sunmethyl groups in $\mathbf{7 b}$ appears at 0.6 and 1.2 ppm as doublet respectively ${ }^{6}$. Complex $\mathbf{5 b}$ must be formed by a hydride addition into a 1 -position of the coordinated 1,3 -pentadiene in 4b. There are two possible positions of hydride additions into unsymmetrical conjugate dienes, a 1 - and a 4 -position in coordinated 1,3-pentadiene, which supposed to give 5 b and 6 respectively. Only $\mathbf{5 b}$ was determined from the reaction of $\mathbf{1}$ and $\mathbf{3 b}$. There are some reports that a hydride adds into the unsubstituted terminal olefin rather than the internal olefin in conjugate dienes ${ }^{9}$. Reductive-elimination of 7 b by trimethylphosphite gave 8 b in 62% yield: ${ }^{1} \mathrm{H}$ NMR (80 MHz ,
CDCl_{3}) (ppm) 8.2 (d, $1 \mathrm{H}, \mathrm{H}$ of $\mathrm{C}-2$ in picoline), 7.8-6.6 (m, 7 H , Hs of picoline and phenyl group), $5.6(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=$ $\mathrm{CH}-), 3.6(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Hs}$ of picoline and phenyl group), 5.6 (m , $2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 3.6(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}$ to CO$), 2.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ in picoline), 1.65 (brs, $\mathrm{J}=4.87 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ to vinyl CH), 1.35 (d, J=6.9 Hz, CH 3 to a-CH); IR(neat) $3.20,2960,2930$, $1730(w), 1640,1580,1440,1420,1110,970.790,700 \mathrm{~cm}^{-1}$; TLC $\mathrm{Rf}=0.28$, hexane:ethylacetate $=5: 2, \mathrm{Si})_{2}$.

Hyrolysis of 8 b with a mixture of 0.1 N HCl solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and chromatographic isolation of the organic layer gave 9 b in 74% yield: ${ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.9$ ($\mathrm{m}, 2 \mathrm{H}, 0$-protons of phenyl group), $7.5(\mathrm{~m}, 3 \mathrm{H}, m, p-$ protons of phenyl group), $5.6(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 4.1\left(\mathrm{~m}, 1 \mathrm{H}, a_{-} \mathrm{CH}\right.$ to CO), 1.6 (brd, $\mathrm{J}=4.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ to vinyl CH), 1.3 (d, $\mathrm{J}=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ to $a_{-C H} \mathrm{CH}$; IR(neat) $2930,2860,1730,1685$, $1600,1450,1205,975,700 \mathrm{~cm}^{-1}$; TLC $\mathrm{Rf}=0.73$, hexane: ethylacetate $=5: 1, \mathrm{SiO}_{2}$.

From the above results it is possible to synthesize the β, γ-unsaturated ketone from the aldehyde by $\mathrm{C}-\mathrm{H}$ bond ac* tivation of aldimine, a subsequent hydride addition into coordinated diolefins, and hydrolysis of the resulting β, γ-unsaturated ketimine formed from the reductive-elimination of im-inoacylrhodium(III)- η^{3}-allyl complexes. The hydride addition into 1,3-pentadiene, conjugated diene, occurs at 1-position, a least hindered side, rather than 4 -position. Also it is convenient to use 2-aminopyridine group as a tool for cyclometallation with ease of removing by hydrolysis. Applications of $\mathrm{C}-\mathrm{H}$ bond activations for other substrates have been under investigation.

Acknowledgement. Author thanks Mr. Yun, Kyungwon for technical assistance.

References

1. (a) M. L. H. Green, Pure \& Appl. Chem., 57, 1897 (1985);
(b) J. Halpern, Inorg. Chim. Acta, 100, 41 (1985); (c) R. H. Crabtree, Chem. Rev., 85, 245 (1985).
2. (a) J. W. Suggs, M. Wovkulich, and S. D. Cox, Organometallics, 4, 1101 (1985); (b) C.-H. Jun, Bull. Korean Chem. Soc., 10(4), 404 (1989).
3. (a) C.-H. Jun and J.-B. Kang, Bull. Korean Chem. Soc., 10(1), 114 (1989); (b) C.-H. Jun and Y.-G. Lim, Bull. Korean Chem. Soc., 10(5), 468 (1989).
4. (a) J. W. Suggs, J. Am. Chem. Soc., 101, 489 (1979); (b) A. Albinati, C. Arz, and P. S. Pregosin, J. (rganomet. Chem. 335, 379 (1987).
5. (a) L. Porre, A. Lionetti, G. Allegra, and A. Immirizi, J. Chem. Soc., Chem. Comm., 336 (1965); (b) L. Porri and A. Lionetti, J. Organomet. Chem., 6, 422 (1966); (c) S. M. Nelson, M. Sloan, and M. G. B. Drew, J. Chem. Soc., Dalton, 2195 (1973).
6. J. F. Nixon, B. Wilkins, and D. A. Clement, J. Chem. Soc., Dalton. 1993 (1974).
7. (a) P. W. Jolly and R. Mynutt, Adv. Organomet. Chem., 19, 257 (1981); (b) B. E. Mann, Adv. Organomet. Chem., 12, 135 (1974).
8. C. A. Tolman, J. Am. Chem. Soc., 92, 6785 (1970).
