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Abstract  This study is concerned with the meandering of plume axis in oceanic waters. The process is
understood that it is a consequence of the differential contribution by the multiple harmonics of local
velocity field to variances of center of mass of crossplume as a function of distance from the source
point. A diagnostic model is proposed which is aimed to delineate the eddying motions and furthermore
the amplified meandering of plumeaxis. From the data base of dye plumes, wave lengths of meandering
eddies are estimated to range between 5.5 to 60.3 (m) in coastal surface waters. A numerical simulation
is conducted to predict the concentration field of meandering plume.
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1. INTRODUCTION

Plumes resulted from continuous release of any
material such as dye or smoke into water bodies or
air often exhibit large scale structures, one of which
is the meandering of plumeaxis. Multiple dynamical
processes are concurrently occurring in the surface
layer of the ocean, several of which are interacting
with local diffusion process to produce surface fea-
tures in concentration distribution. Those features
possess very peculiar and salient structures and are
distinctively related to the spectrum of local eddies. It
is of interests to understand this behavior not only
from scientific point of view but from the practical
stand point particularly in predicting the concentra-
tion field of health-related hazardous materials.
Without taking considerations of such a behavior,
prediction will inevitably undergo through errors

leading to unrealistic concentration field.
Literatures (Kenney, 1968; Csanady, 1971; Mur-
thy, 1972, 1976) have reported pronounced surface
features in that the trajectory of the center of mass of
individual patch emitted from the source is compli-
cated, not following the straight line as is expected in
a slender plume model. These features show a great
resemblance to the aspect of fluctuating smoke
plumes in the atmosphere, although two systems are
occurring in two different planes, horizontal and
vertical respectively. This phenomenon is traditional-
ly called meandering of plume. As has been qualita-
tively described, the center of mass of plume ex-
periences lateral bodily displacements as it travels
downstream from a source point. Local eddies whose
scales are larger than the width of plume are acting to
displace the plume. The extent of the displacement
seems to be correlated to the increase in size of the
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acting eddies with the travelling distance of plume,
and thus the amplification of the displacement takes
place.

So far, theoretical approach to quantify the mean-
dering feature is scarce (Kenney and Jones, 1972),
while numerous dye studies have been carried out,
mostly concerned with describing visual phenomeno-
logical features of plume meandering. To the
author’s knowledge, Gifford’s fluctuating plume
model(1959) seems to be the only theoretical attempt.

Thus, this study will examine the meandering of
plumeaxis from the view point of the statistical char-
acteristics of local velocity field. Furthermore, a di-
agnostic model will be developed to elucidate the un-
derlying mechanism of meandering phenomena and
will be interpreted in an analogy to a harmonic oscil-
lator problem. Using the data base of dye plumes, the
wave lengths of meandering eddies will be analyzed.
To demonstrate the usefulness of the proposed
diagnostic model, numerical simulations are con-
ducted and provide the concentration field of me-
andering plume.

2. STOCHASTIC CHARACTERISTICS OF
PLUME MEANDERING

In idealizing plume model, conventional assump-
tions are usually made in that constant unidirectional
velocity is convecting the material which is balanced
by the lateral diffusion by local eddies to result a
slender plume. However, in reality such a condition
is rarely met. In fact, the velocity field in ocean water
would not show constant at all, yet fluctuate in time
and space, i.e., composed of multiple harmonics in
frequencies and wave numbers. Non-constant low
frequency motions will thus have other implications
beyond the lateral diffusion of plume width. In this
study, attempt is made to relate the low-frequency
components to one of most distinctive surface struc-
tures which reveal several deterministic natures due
to its slowly varying properties.

To understand the statistical characteristics of
meandering of plume, a line of thought analogous to
the lateral diffusion process proposed by Taylor

(1921) is followed.

Consider an ensemble of realizations of individual
patches emitted from a source, each moving with a
mean velocity, U in the downstream direction and
fluctuating with a random velocity, v ' in the lateral
direction. According to Taylor, the lateral variance

of the center of mass of the patches is given by

yi=2vt [fat ["Ri(o) de (1)

where R; () is Lagrangian autocorrelation func-
tion. The increase of the variance, 72 has two reg-
imes in which

yi—v'?t? for t very small
Y?=2v'Tt for t very large (2)

where T is a Lagrangian intergral time scale.

As a result, the envelope of the trajectory of the
center of mass will expand as the patch travels down-
stream in a Lagrangian sense. This implies that the
amplitude of meandering of an individual plume will
increase as time, t or travel distance, x (= Ut) incre-
ases.

Next consider the effect on the variance of the
various frequencies in the random motion of center
of mass. Let

—— / B, (
where E; (f) is a Lagrangian energy frequency spec-
trum function. The use of (3) in (1) yields

cos (2xfz)df {3)

_2f df B, ( 1- cozsf(22;rft) )

For small values of t, (4) can be approximated as

Vi) =t o‘”EL (f) df (5)

This illustrates that for small diffusion time (in this
case, small travel length, x), the variance of the
center of mass is determined by the contribution
from all frequency components. On the other hand,
for very large values of t, the variance in given by
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Fig. 1. Schematic picture of idealized meandering plune.

1-cos(2nft
-tf2t 2:2;) E, () df
_t =, 1-cos(v) v
_nﬁ dv=—" B (ert) (6)

where v=2r ft
The values of (1-cos ( v)/ v?) for very large v will be
very small. Hence, we can expect that an appreciable
contribution to the variance comes only from the val-
ues of the integrand corresponding to moderate or
small values of v.

Consequentially one may put

E(v/2t)=E, (0)
and (6) is approximated by

= 1—-cosy tE 0)
y'? f dvy 7 ox {(7)

The arguments above-mentioned enable us to
construct a simple scenario in the meandering be-
havior. The variance of meandering behaves dif-
ferently according to the differential contribution of
frequency components of motions. In the vicinity of
source when travel time is small, the center of mass
moves with the velocity dominated by the local mean
velocity. High-frequency components of velocity on-
ly contribute its'energy to the growth of plume width.
Until this time, any meandering motion is not appre-
ciable. As time lapses, the low frequency fluctuations
of velocity field begin to dominate in the contribu-
tion to the variance of meandering as predicted by
Equation (7), and the amplitude of meandering be-
comes comparable to that of local mean velocity. The
low frequency components come from local big ed-
dies.

Idealization of this meandering phenomenon is
schematically sketched in Fig. 1. In the vicinity of
origin (source), the plume does not show any mean-
dering motion whereas somewhere in the down-
stream, it starts to fluctuate laterally and the

amplitude of meandering is increasing.

3. A DIAGNOSTIC MODEL FOR PLUME
MEANDERING

To build a diagnostic model of meandering, start
with evolution equation for the trajectory of the
center of mass of crossplume, R such as

X, t) {8)

where a and x represent the initial position vector and
coordinate and the underlines are used to denote the
vectorial quantities. By component notation, 8) reads

dx

E=U=P(t, X, V)

dy

-Vt xy) (9)

Equation (9) of two coupled first order differential
equation represent a dynamical system of the second
order. when the system is autonomous (Percival and
Richards, 1982; Andronov et al, 1973), the time de-
pendency of velocity field does not appear explicitly
in the system equation such that

dy _ Q(x,y)
d—.X P (X Y) (10)

Introducing a stream function, ¥ for the velocity
field, the system equation (9) can be expressed as

dx_ _2¥

dt oy

dy ~ oF

at ' T ax w

(11) constitutes the canonical equation of Hamilto-
nian in which the stream function, ¥ corresponds to
the Hamiltonian. For an autonomous system, isa
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Meandering Streamline

Amplified Meandering Streamline

(= S~~= S 7= ~~ = 7/
=
= C=">
= S~ Lo\ = ]
Fig. 2. Streamlines of array of eddies expressed in Equa-
tion (15). One tick mark in x-axis represents the
wave length of meandering eddies.

constant of the motion, and a particle is supposed to
move along the curves of same values of ¢.

To determine a stream function uniquely with a
given feature of meandering motion, it is needed to
specify the function forms of P and Q. First of all,
the equation of continuity is imposed on the func-
tions, P and Q such as

- 1+t=5--0 {12)

The task of this problem is now to find function
forms of P (x, y) and Q (x, y) under the constraint of
the continuity condition.

One solution for P (x, y) and Q (x, y) is obtained
in an analogy to Stommel (1949). This model repre-
sents an array of organized eddies convected by a
constant mean velocity, U. in the x direction;

P(x,y)=U, —ak,sin (k, x)cos (k, y)

Qx,y)= ak, cos (k, x)sin (k, y) 13

The stream function for this system is given by
Txy)=U,y-a sink, x)sink,y) {14

Fig. 2 illustrates the streamlines of the eddying
motions and the trajectory of center of mass defined
by Equation (14). This model succeeds to reproduce
a meandering plume, yet, it is not enough to deli-
neate one of important features, the amplification of
meandering described previously.

To make allowances of the more realistic behavior
of meandering, a solution is sought for the functions,
P (x, y) and Q (x, y) assuming that the flow is cons-
tant and uniform in the x direction. Consequentially,
P becomes constant and Q must be a function of x
only to satisfy the continuity condition in (12). A
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Fig. 3. Streamlines of amplified meandering eddies defined

in Equation (17).

model is proposed such that

%:A sinfi )+ Ak x cos k ) =
(15
(15) can easily be integrated to find
y=Axsin (kx) (16)
and the relevant stream function is
¥(x,y) =Usy+Ax sin (kx) 7

(16) represents a sine function whose amplitude m-
creases linearly with x, thus the resulting stream lines
show the amplification of meandering seen in Figure
3.

To cast the problem in a different way, differen-
tiate Equation (10) once more with respect to x and
by using (16), it results

d'y

dx2+k2y=2A k cos (kx) {18

(18) is the equation of a harmonic oscillator with a
sinusoidal forcing function. It is interesting to com-
pare this equation to the harmonic oscillator problem
in general (Crawford, 1968) such as

dz
ﬁ}p x)

d
TH+aEy-F ) 19
or forced Helmholtz wave equation such as

d’*n
dXZ

+k*n=F (x) =X B (ki) cos (ki x) {20

It is obvious that (18) is a special case of (20) with
p (x) =0 and q (x) = constant. (18) corresponds to
the Helmholtz equation in which the forcing function
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is a single mode, k, =k,i.¢,the resonance mode. The
speculation of the meandering process in relation to
the spectrum of eddy field will postulate that the me-
andering of the center of mass is a consequence of
harmonic motion in response to the forcing of local
eddy whose length scale will be 1/k. A wide spectrum
of local eddy field will be more realistic to represent
the forcing function in (18) such as

F(x) =X A;sin(k; x) +A;k;x cos (k;x) 21)

Although the meandering process is expressed in
linear equation in (18), the reality would be in most
cases non-linear as is in the problems of turbulence.
It will be hence very informative to estimate the wave
length of local eddy responsible for the meandering
process using the data base from the Plates I-VI.

4. ESTIMATION OF WAVE LENGTH OF
MEANDERING EDDY

Plates I-VI out of 295 cuts are chosen to represent
the typical features of dye plumes resulted from a
continuous point source in coastal waters. These
photographs of Rhodamine WT dye plumes were
taken during the dye diffusion experiments in South
Shore off Long Island, U.S. from the altitude rang-
ing from 850 to 1500 feet using Cessna aircraft.
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Aerial mapping camera with special optical filter sets
was used to get the enhanced contrast between Rho-
damine dye field and ambient waters. The negative
films of dye plumes were then scanned to get the op-
tical densities by use of micro-photodensitometer.
The optical density field were then calibrated into dye
concentration field. These concentration fields con-
stitute the data base for this study. In Table 1, scann-
ing resolution and actual sampling rate are listed.
The scanning micro-photodensitommetry provided
quite unusual opportunity to obtain very detailed
concentration field of dye plumes, the spatial sampl-
ing rate of which is less than I meter. The detailed
technical informations of aerial photography and
subsequent processing can be referred 10 Okube e/ ul.
(1983) and Ro (1985).

Three features are quite visible as follows; 1)
slender plumes with straight plumeaxis in Plate III
and IV are apparent, 2) meandering of plumeaxis
with varying wave lengths exist in Plates I, II, III, V,
and VI, 3)in every Plates, striations perpendicular to
plumeaxis are visible which are suspected to be re-
lated to the local Langmuir cell circulations. These
features usually interact each other to make dye
plumes more complicated than assumed or expected
from theoretical point of view.

Table 1 summarizes the estimates of the wave
lengths of meandering eddies through the regression

Table 1. [nformation for the dye plumes with oceanographic conditions. The estimates of wave length of plume meandering

are listed.

Plate Date dx dy Alt DX DY U k
I 22 100 100 1500 30 30 33 2.5
11 24 100 100 1000 20 20 25.3 6.4
111 25 100 100 880 18 18 17.3 15.7
v 25 100 100 940 19 19 17.9 13.2
v 25 500 50 850 8s 9 9.5 60.3
VI 26 100 200 1000 20 40 24.0 5.5
Plate : Dye Plume ID.

Date : the day when the photograph of dye plume was taken in August, 1980.

dx, dy : scanning unit by micro-photodensitometer, ( & m)

Alt : the altitude where the phoptographs were taken (ft),

DX, DY: Sampling resolution in real ocean (cm).
U : mean current speed to the plumeaxis, (cm/sec)
k : wave length of plume meandering (m).
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Plate I-VIL. Aerial photographs of dye plumes of Rhodamine WT from a contiunous point source. These were taken during
the dve diffusion experiments in the coastal surface waters of South Shore off Long Island, USA in August,
1980.
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Fig. 4. Typical example of the trajectory of plumeaxis ob-
tained from the Plate III by using the micro-
photodensitommetry. X-axis represents only a
small portion of the plume.

analysis. In estimating the wave lengths, first set up
the data base of the coordinates, (y,, x;) of peak con-
centrations of any particular dye fields. And then,
(¥, X;) are regressed to the equation of y = A x sin(kx)
in Equation (16). Since this involves nonlincai
regression with regard to k, special cares were paid.
In this study, IMSL and BMDP library were useful.
The wave lengths of meandering eddies ranges from
5.5 to 60.3 meters which represent the diffusion field
of the length scales, i.e., up to 3 (Km) to plumeaxis
and 100 (m) to the lateral directions. Of course, these
estimates will vary according to the local conditions
of eddy field and to the domain of diffusion field.

S. NUMERICAL SIMULATION OF PLUME
MEANDERING

The horizontal eddy diffusion equation for the
dye concentration, C,

oC oC oC o*C
3t +Ua—x+V(X‘Y)§_KayZ+S(X’Y) (22)

where U is constant, while v (x, y) is given by the
equation (18), and continuous source is defined at
initial point with constant intensity, is numerically in-
tegrated. For numerical integration, the finite diffe-
rence explicit schemes of forward time, alternating
direction scheme (Saulyev, 1957) for the second de-
rivative, and centered space for the first derivative
are used. The schemes used yield the accuracy of first
order in time and second order in space domain. It-
erations are made until it yields near steady state.
Figure 4 shows the numerically obtained concentra-

Meandering Plume

===

i N 1 L e

tiz. 5. Typical example of the concentration field of
meandering plume reproduced by the numerical
simulation. One tick mark in x-axis represents the
wave length of meandering eddies. Spatial dif-
ference grids were chosen as 10% of the wave
length. The amplitude of the lateral oscillatory
velocity was chosen as [% of mean conveciing
velocity. Contour lines ranges from 0.5 to 3 with
contour level of 0.5 concentration unit. Source in-
tensity is one concentration unit per time step.

tion field which is successful in simulating realistic
meandering plume. Such a concentration field would
not be predicted without taking considerations of the
eddying motion to the lateral direction.

6. SUMMARY AND CONCLUSION

This study relates the meandering of plumeaxis to
non-constant, multiple harmonics of velocity field.
The frequency components of velocity field behave
differentially in contributing to the increase of
variance of center of mass of plume. This line of
thought leads to propose a diagnostic model of
plume meandering in which amplified feature is re-
produced under the constrain of continuity condi-
tion. The behavior of the amplified plume meander-
ing is interpreted in an analogy to the forced har-
monic oscillator in that local eddy field is acting as a
forcing term to displace the center of plume laterally.
Accordingly, the plumeaxis is oscillating and lateral
displacement is increasing as the distance from the
source point is increasing. The proposed diagnostic
model is used in numerical simulation of dye concen-
tration field to define the lateral velocity and the con-
sequent plume is reproducing the realistic amplified
feature successfully.

This study was motivated to exploit the statistical
characteristics of meandering plume and to propose a
diagnostic model for that. However, its arguments
are initiated from the kinematic consideration of
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velocity field. In the future study, it should be further
out from a dynamical consideration of velocity field.
For example, it will be of interests and importance to
include dynamical process such as local Langmuir
cell circulation to assess their effects on the resulting
concentration field.
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