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Recent Development of Angular Spectrum Models for
Water Wave Propagation
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Abstract[] As an effort for modeling the water waves propagating in a wide range of incident angles as
when waves are diffracted behind a breakwater, angular spectrum models have been developed. In this
paper, the concept of the angular spectrum is illustrated and the recently developed angular spectrum

models are introduced.
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1. INTRODUCTION

As water waves propagate from the deep ocean to
the coast, they are transformed continuously in both
space and time by refraction, diffraction, shoaling,
and interactions among waves themselves or with
tidal or other ambient currents. Numerous means
have been developed to predict the transformation of
waves including the effects of these phenomena. Un-
til the 1960s the theories for refraction and diffrac-
tion for water waves were developed independently.
One of the first attempts for describing the combined
effects of refraction and diffraction was made by
Berkhoff (1972). His equation known as the mild-
slope equation is given by

Vn- (CCeV, @) +k*CCL0=0 (1

where V, is a gradient operator in horizontal coordi-
nates (x, y), k (x, y) is the local wave number, C (x, y)
and C, (x, y) are the local phase and group velocities,
respectively, and @ (x,y) is a two-dimensional velogi-

ty potential which is related to the velocity potential
for the wave motion, ¢'(x, v, z, t), by

_.g cosh k(h+z)e_m

@ =1 0= osh kh

(2)
where i=v—1, g is the gravitational acceleration, w
is the angular frequency, t is time, h (x, y) is the water
depth, and the vertical coordinate z is measured verti-
cally upwards from the still water line. The mild-
slope equation is essentially of elliptic type, so it can
be solved only when a boundary condition along a
closed curve is given. Numerical finite-element tech-
niques have been used by Berkhoff (1972) to treat ar-
bitrary boundary problems such as harbors and
islands, which need to solve a set of simultaneous
equations over the whole area. In order to obtain a
numerical solution for short waves over a large mo-
del area, a great amount of computing time and sto-
rage is thus needed.

Radder (1979) demonstrated a method for obtain-
ing a parabolic equation by applying a splitting mat-
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rix approach to the mild-slope equation. Similar
equations including nonlinear effects were derived by
Kirby and Dalrymple (1983) and Liu and Tsay
(1984). The parabolic equation method using mar-
ching solution technique is advantageous for solving
the propagation of waves on a beach with a given
wave condition at the offshore boundary. Also it is
more convenient and rapid than the finite-element
models using the elliptic mild-slope equation. There
is a significant drawback of the parabolic method,
however, in that it requires that the waves propagate
nearly along a given direction (say x direction). De-
viations of the wave direction, due to refraction and
diffraction, away from this direction lead to errors,
which are usually small for waves propagating in di-
rections not greater than 30 degrees from the x direc-
tion.

Efforts towards developing a large-angle parabol-
ic model have been made. Booij (1981) developed a
parabolic model including current effects, improving
Radder’s model by about 13 degrees in angles of pro-
pagation from the x direction. Kirby (1986a) utilized
the Padé approximant to find a higher-order correc-
tion to the usual lowest order parabolic approxima-
tion, giving reasonably accurate resulis up to about
50 degrees of propagation from the x axis. Kirby
(1986b) additionally used the minimax approxima-
tion to obtain better accuracy for waves propagating
at large angles at the expense of degradation of ac-
curacy for waves incident at small angles,

Recently the Ocean Engineering Group at the
University of Delaware, USA, has developed a series
of angular spectrum models, which are theoretically
valid for angles of propagation up to +90 degrees
from the x direction and permits solution by a mar-
ching method like the parabolic method. The pur-
pose of this paper is to illustrate the concept of the
angular spectrum and to introduce the recently deve-
loped angular spectrum models for solving various
wave propagation problems.

2.THE ANGULAR SPECTRUM AND ITS
PHYSICAL INTERPRETATION

In order to illustrate the concept of the angular

spectrum and its physical significance, we consider
the Helmholtz equation in @ (x, y):

g0 o0 .,

57‘{‘—8?—4-1( ¢=0 (3)
which is equivalent to Eqg. (1) in water of constant
depth.

Suppose that a wave field represented by @ (0, v)
is incident on the line x =0, propagating into the half-
plane x>0. The Fourier transform of ¢ (0, y) in the
y direction is

(0, A)=[: &0, y)e-**dy )

where the circumflex denotes a transformed variable
and A is the continuous Fourier parameter. The in-
verse Fourier transform is

1 b iy
00.v) =5 [ 60, 1)ed 5)

Noting that the unit-amplitude plane wave propa-
gating in the direction of k=( K- 213, A ) is
expli( ¥ k2— A%+ A)], exp (i Ay) may be regarded
as a unit-amplitude plane wave propagating in that
direction at x=0. The complex amplitude of that
plane wave component is simply (1/27) <1A§(0, A)d
as can be seen in Eq.(5). For this reason, ) 0, A )is
called the angular spectrum of the wave field ¢ (0, y).
Simply the angular spectrum is nothing but the Fou-
rier transform of a wave field along a straight line,
each component of which represents the complex
amplitude of the plane wave propagating in a certain
direction.

The Fourier transform of Eq.(3) in the y direction
provides an equation for the evolution of the angular
spectrum (i(x, A

B+ (K2 =A%) &=0 (6)

where subscripts denote partial differentiation. An
elementary solution to this equation for constant k is

@ (xx)=0(0, A)exp (WK = A’x) (7)

This result will be interpreted differently depending
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Fig. 1. Diagram of the Fourier decomposition of the wave
field on a row with an angular spectrum (with
lateral wavenumbers, sA, s=0, +1, +2,..). Ky
and ky are the wavenumbers in the x and y direc-
tions, respectively.

on the magnitude of (k*— A %). If (k*~ A 3 >0, then
the effect of propagation over a distance x is simply a
change in the relative phases of the various compo-
nents of the angular spectrum. Since each plane-wave
component propagates at a different angle, each
travels a different distance to reach a given observa-
tion point and relative phase delays are thus intro-
duced. If (k*— A ?) <0, these wave components decay
exponentially as they propagate in the x direction.
Such components of the angular spectrum are called
evanescent modes. In water wave problems, these
evanescent modes are usually neglected and only the
progressive modes at the offshore boundary are car-
ried into the domain, assuming the energy of the
evanescent modes is negligibly small compared with
that of the progressive modes. The limiting case,
(k?— A% =0, corresponds to the plane wave propa-
gating in the y direction, contributing no net energy
flow in the x direction.

Finally, the inverse Fourier transform of kq.(7)
gives the solution to Eq.(3) in terms of the initial an-
gular spectrum é)(O, A):

P(x,y) =§1;[: @ (0, A)exp (k- A%x)
exp (IAy)da (8)

This equation implies that it is sufficient to know the
free surface displacement on the line x =0 to deter-
mine it at any point in the half-plane x >0.

In the actual computation using discrete data val-

ues on a computational grid, a discrete Fourier trans-
form is used under the assumption that the model do-
main is periodic in the y direction. By discretizing the
domain of width | by N+1 equidistant points of
spacing Ay=1/N so that ¢ (x, 0)= ¢ (x, N 4y), the
velocity potential ¢ (x, y) defined on the first N
points can be transformed into discrete Fourier

modes by
1 w~-1
05 (X) =7 2, @& 1Ay)e e,
N N
=0, +1, + +(=-1), - =
$=0,+1, %2, £ (5 -1, =5

which describe the wave components propagating in
different directions as indicated in Fig. 1. The inver-
sion formula is

(%, JAy) =§ D (x)eisriay

i=0,1,2 - (N=-1) 10

where

2r

A= N_._A—Y (1)
which is different from the continuous Fourier pa-
rameter A used previously. These transforms can be
performed efficiently by using a fast Fourier
transform.

In this section the concept of the angular spec-
trum was illustrated on the xy plane, so that the an-
gular spectrum is defined on the lines of constant x
and its evolution is computed on the half-plane x> 0.
In other branches of physics and engineering (e.g.
Ratcliffe 1956; Gabor 1961; Clemmow 1966), the an-
gular spectrum has been used in the xyz space, in
which the angular spectrum is defined on the yz plane
and its evolution is computed in the half-space x > 0.
The use of the angular spectrum in the three dimen-
sional space is discussed in Goodman (1968) and nceds
the Fourier transform in both y and z directions.

3. LINEAR MODEL ON A BEACH WITH
STRAIGHT ISO-BATHS

In the previous section, the linear angular spec-
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trum model for water waves on constant depth was
developed. The next simple case may be when waves
propagate on a beach with straight and parallel (in
the y direction) bottom contours. For this case the
mild-slope equation (1) can be written as

(CCe®2) ++CCe®,,+k*CC0=0 (2)

The discrete Fourier transform of the above equation
in the y direction leads to the decomposition of the
potential into directional modes

(CCe®s,) s+ k* = (s2)*) CC40,=0 (13)

Splitting the potential into the forward-propagating
and backscattered potentials and neglecting the as-
sumed small backscattered wave, Dalrymple and Kir-
by (1988) constructed the angular spectrum model
for the forward-propagating wave given by

2/K? = (51)?CC,0.; ~ 2i (k*~ (sA)*) CC,0;
+ [\/kz——(SA—)—ECCg]xQ;=O,

s=0, £1, £2, -, £ (—-1), -E 19

in which the superscript + denotes the forward-pro-
pagating wave. This equation can be solved analytic-
ally to give the solution

(CCk: - (sA)
CC/kE- (s1)?

&5 (x) = 02 (0) ( Sy

exp(i/*vk*= (sA)%dx) 15

in which the subscript o indicates initial conditions at
x=0. The bracketed term contains the shoaling and
refraction coefficients associated with gradual water
depth changes. In water of constant depth this equa-
tion reduces to Eq. (7). Note that on constant depth
the magnitude of each component of the angular
spectrum remains constant and only its relative phase
changes with x.

4. QUASI-NONLINEAR MODEL ON
IRREGULAR BATHYMETRY

Dalrymple and Kirby’s (1988) model was extended

to the case of irregular bathymetry by Dalrymple,
Suh, Kirby and Chae (1989). The governing equation
is again taken to be the mild-slope equation (1). Using
the definition of p (x, y)=CC,and ¢ =+ p@ as in
Radder (1979), the mild-slope equation becomes an
Helmholtz equation

Vig+kigp=0 (16
in which
7D
ki=k*— —— 17
) "
Defining a laterally-averaged wavenumber, ﬁ, as
- 2
L [ w2y 19
2 Jo
so that
ki=k? (1-v?) (19
in which
2
Se1-5 20

Eq.(16) becomes

g+ k' —k*v¢=0 @1)
Note that K 2 is a function of x only and the varia-
bility of depth in the y direction is contained in v*(x,

y). The Fourier transform of the above equation
leads to the equations for directional modes

Boput (K= (5A)") ¢s — K'F, (v3¢) =0 ()

in which F denotes the sth component of the discrete
Fourier transform. Note that the Fourier transform
of (2 ¢) involves ¢ in the real space.

Again splitting the potential and neglecting the
backscattered wave, the propagation model for the
forward-propagating wave is obtained as

2k - (sA)’¢:, -2 (k* — (50)%) 2
+Wk? = (sA)* )5+ K*Fo (v?9*) =0,

(5D, -+ 23
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This equation represents N first-order ordinary diffe-
rential equations in x, which are solved by a fourth-
order Runge-Kutta method. The details of finite dif-
ferencing and stability analysis of the numerical
method are referred to Dalrymple ef a/. (1989). The
numerical procedure involves calculating the Fourier
modes by marching along the x direction. However,
F{»? #*) in the last term should be calculated in the
real domain, so, at each step, recourse to the real do-
main by the inverse FFT is needed.

The angular spectrum model (23) is linear since it
is based on the linear mild-slope equation (1). In
order to incorporate nonlinearity in the model, an
empirical nonlinear dispersion relation proposed by
Kirby and Dalrymple (1986) is used, which approx-
imates the wavenumber for a solitary wave in shallow
water and, in deep water, provides the wavenumber
corresponding to the Stokes third-order theory, given
by

o’ =gk (1+1,eD) tanh (kh+1, ¢) 24

in which € =ka; a is the wave amplitude trom ihe
linear theory, and

f, (kh) =tanh®*kh (25
kho
f, (kh) = [m] 26)

cosh 4kh+8—2tanh?kh
8sinh‘kh

D= 7

The calculation of the wavenumber k using Eq.
(24) needs iteration because of the dependence of the
wavenumber on wave height. Thus, first the com-
putation is performed with the wavenumber given by
the linear dispersion relaion (f;=f,=0 in Eq. (24)).
Using the calculated wave hight, then the wave-
number is corrected by the nonlinear dispersion rela-
tion (24). This procedure is repeated until converge-
nce is achieved.

The term Fs(v2 $*) in Eq.(23) represents the in-
teraction between the directional wave modes and the
lateral bottom variation, which can force the evolu-
tion of the various directional modes, even if they are
initially of zero magnitude. This mechanism can be

explained mathematically by expressing Fs(u2 $*), in
terms of periodic convolution (Oppenheim and
Schafer, 1975), as

1~

Fy(v'¢") = z; vh (%) 83, (x) 29

in which vp(X), p=0 to (N-1), is the discrete Fourier
series obtained by the Fourier transform of v*(x, y) in
the y direction, This equation states that the p th bot-
tom mode uf,(x) triggers the (s —p)th wave mode to
evolve the s th wave mode. This wave-bottom interac-
tion has been illustrated more explicitly in Dalrymple
et al. (1989) by applying the model to a monochro-
matic wave train travelling obliquely over a
sinusoidally varying ripple bed.

5. FULLY-NONLINEAR MODEL ON
IRREGULAR BATHYMETRY

Starting from the complete boundary value pro-
blem for water waves including nonlinear free sur-
face boundary conditions and using the method of
multiple scales and Stokes expansions for velocity
potential and free surface displacement, Suh (1989)
developed an angular spectrum model for propaga-
tion of random waves on irregular bathymetry. By
doing this, he could include nonlinearity in a more
rigorous fashion and express the wave-bottom in-
teraction more exactly than Dalrymple ef a/. (1989).
A simple case for a single-frequency wave was
reported in Suh, Dalrymple and Kirby (1990). Their
model is given by

vk?— (sA [sz S/\ *CCa)x
———k——~C As, A,
. wkh
Snh2kR e T
zk4hz .
Cg,;/k2 sthZkh”s S2
. wk'h? o
- ,,smhzkh[ Ctanh kh+ sh”kh]e sy
g -iog] 1 G -5 ()
" Zucosh RS e g (GuleTRT0 0
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In this equation, A, is the complex amplitude of the
directional wave mode similar to ¢.* in Eq.(23), 6,
and Q are the phase functions, L, to I, are the
wave-bottom interaction terms similar to F, Z
in Eq. (23), and (G,;), in the last term is the cubic re-
sonant interaction term. More detailed descriptions of
these terms are referred to Suh ez a/. (1990). Eq. (29)
is N coupled first-order ordinary differential equa-
tions for A, (s=0, £1, £2,...) and can be solved by
a fourth-order Runge-Kutia method.

Eq. (29) can be compared with Eq.(14) or (23) for
simple bathymetry. After substituting for @' by

03~ Asexpli [*VET= GA)7dx) 80

Dalrymple and Kirby’s (1988) linear model, (14), be-
comes

vEk:— (sA)?
—

VK= GICC.
2w s=0

@1

CeAs, +

which can be obtained by linearizing Eq.(29) on strai-
ght and parallel contours. Thus, Eq. (29) on straight
and parallel contours is the nonlinear extension of
Dalrymple and Kirby’s wide-angle wave propagation
model.

The wave-bottom interaction term including F
(v? %) in Dalrymple ef al. model (23) is replaced by
more complicated terms including I, to I, in Eq.
(29). Suh ef al. (1990) has shown by applying these
models to the experiment of Berkhoff e al. (1982)
that the linearized version of Eq.(29) is computation-
ally much faster and more accurate than the linear
form of Dalrymple er a/. model because of the more
refined wave-bottom interaction terms. This is also
true when it is compared with a linear parabolic
model. The reason why Suh e a/. model including
more complex wave-bottom interaction terms needs
less computing time than Dalrymple er al. model is
that, as can be seen in Eq.(30), the former modeling
the slowly varying wave envelopes, A  can take a
larger Ax than the latter modeling the free surface
variation, ¢,*.Thecomputing time of the fully non-
linear equation (29), however, is much greater than
that of other nonlinear models owing to the com-

putation of the cubic nonlinear terms (G,;), involv-
ing triple summations.

The most advantageous feature of the angular
spactrum model is that it permits solution by a mar-
ching method like the parabolic model but is valid for
waves propagating at large angles from the assumed
propagation direction. In order to test the model for
waves propagating over an irregular bathymetry at
large angles of incidence, Suh et a/. (1990) have ap-
plied the model to the simulation of wave focusing
behind a circular shoal resting on a flat bed. Due to
the axisymmetry of the circular shoal, the wave
focusing pattern behind the shoal should be indepen-
dent of the angle of incidence, if the model predicts it
correctly. They concluded that in order for the model
to be valid for the case in which waves propagate at
large angles from the x direction, the deviation of the
actual depth from the laterally-averaged depth
should be O( €) of the laterally-averaged depth.

6. CONCLUDING REMARKS

Recently developed angular spectrum models for
water wave propagation have been reported. In all of
the models, the wave field at the initial row (x=0) is
Fourier decomposed into directional modes and the
evolution of each mode due to bottom variation is
calculated by marching along the x direction; finally,
the real wave field is recovered by taking the inverse
Fourier transform in the y direction.

The linear version of Suh er a/. (1990) model is
computationally much faster and more accurate
than other linear angular spectrum or parabolic mo-
dels. Its nonlinear version, however, takes more com-
puting time than other nonlinear models. The range
of validity of Suh er a/. model is same as that of
third-order Stokes theory. Dalrymple e al. (1989)
model based on the mild-slope equation, however,
can be used in any water depth since the mild-slope
equation is exact for deep, shallow and constant-
depth water and is valid for intermediate depths as
long as the depth does not change too rapidly over a
wavelength, Current effects also could be included by
using the following dispersion relation

s=wtk-U
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where o =2 /T is newly defined as the angular fre-
quency, w is given by Eq.(24), and 6 is the depth-
mean current vector which is assumed to be known.

The most significant restriction of the angular
spectrum model, in the application to a practical pro-
blem, due to the use of Fourier transform technique,
is that the domain of the model area should be re-
ctangular and should be large enough in the lateral
direction to avoid the intrusion of boundary effects
into the area of main interest.
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