TH#REBE F13% $218 1990F 55 119

Applying Object-Oriented Systems & Al to Computer
Integrated Manufacturing Systems

— 2 2|5k A8 g <]

>
L
Y
>

BQFE AR AY ARQLD(CIME] 57 Y O wejsjofok & AhakEol A4s ek
CIM®| ¥348 Fadalsl slald SANGA2 8 AFAF) Mg - T2 sl Agsigieh,
CIMstll 4l 5314 426§ Batabeel waslt FAHLE Bdss a4 2484029 °§ QTAS

7l4fe] o] &={ et
1. INTRODUCTION

Computer Integrated manufacturing (CIM) cannot be constructed just by integrating the automated de-
vices available at present, such as CAD, CAM, CAPP, etc. systems. It is the systems approach of linking
together the various automation tools available today, so as to enable the control of an entire manufactur-
ing operation, as well as related business functions.

Until the current state of a munufacturing operation is known and can be reacted to at any given point
in time, the virtues of expert planning and control systems can never be fully exploited. The result of
every business decision must be measured on whether or not the decision has maximized the throughpu:t of
company to meet its demand and minimized the manufacturing cost. We find production personnel having
to rely on “intuition” to make daily decisions. What is more extraordinary is that their “gut feel” or “intui-
tion” often work [3]

As the manufacturing environment becomes more automated, people will not be able to handle all the
asynchronous events in an acceptable period of time. Therefore, there exists a need in the manufacturing
environment to replicate this intuition. Intuition can be translated into computer terms as an expert system
that can learn as everchanging environmen.

To realize successful CIM, the automation of friendly communication between experts is required, which
plays an important role in integration of the various function of CIM systems. The Emerging technologies
in both AI and Objected oriented system are responsible for achieving high performance transmission of
information as in the friendly communication between the experts.

In this paper, we have introduced the formalized structure of concepts to represent the complexities of
CIM systems. To express the information in CIM systems we make use of an powerful today’s emerging

techniques. (Object-oriented systems and Artificial Intelligence)

A N A

A 19900 4% 259

*
[
2
=

o
2
22
2
os



120 8 & %

2. DECISION MAKING IN CIM SYSTEMS

Computer integrated manufacturing refers to the integrated use of computers in all sectors of a manufac-
turing environment ! from production planning and design, through scheduling and quality control, to fab-
rication, manufacture and handling of finished products.

The characteristic of CIM systems [1] are
—hierarchical systems in structure and processes.

—systems with several conflicting objectives or strains expressing a network of relationships among system
variables.

—system with adaptive and maintenance mechanism to answer to external variations and keep the obtained
equilibrium.

Therefore, a CIM system can be viewed as a team of intelligent cooperating objects or entities arranged
in a hierarchical structure composed of many different levels. The object are connected together through a
tree like network which messages are sent and responses received.

The highest level is a facility level. Decision making in this level involves Master Production Sche-
dule(MPS). The next one is the shop level. A shop is made up of a number of manufacturing cells con-
nected through communication links. At this level, the system has to control the dispatch of material hand-
ling equipment and monitor cell conditions etc. Below the shop level is the manufacturing cell is a group
of machine tools and associated material handling facilities that are managed by a supervisory computer
called a cell-host. The cell-host takes care of several functions. It schedules the flow of jobs within a cell
and instructs individual cells about tasks that each must perform. At the lowest level are the individual
machine tools, for which individual operations must be scheduled.

The goal is to fully integrate all aspects of management either all essential elements of the process.
What are important is minimizing the distance/barriers from the management function to the process being
managed, reducing the layers of management by expanding the span of control, and minimizing data filter-

ing/interpretation by indirect labor.

2.1 MAJOR ISSUES IN CIM SYSTEMS
A CIM system consists of a team of intelligent entities that are tied together and the following character-
istics -
1) Multiple entities distributed over several distinct levels, and arranged in a hierarchical structure.
2) A communication system among the entities for sending and receiving messages for instructions, con-
trol and updating.
3) Autonomy and intelligence among the entities so that decision about a wide range of issues can be
taken without intervention, either from humans or higher levels in the system.
We identify certain isssues that must be studied.
1) Number and type of objects, and the nature of inter-object communications.
2) The size of an information database allocated to each object and its relation to global database.
3) Degree of intelligence and autonomy permitted to each object.
4)

Allowance for the representation of time-dependent concept and deductive decision making.

3. OBJECT—ORIENTED SYSTEMS

It may be helpful to briefly recall what are the characteristics of object-oriented systems and why these



IHREEEG P13 F208 19905 57 121
characteristic are important to us.

3.1 HOW THEY WORK
1) Grouping data and procedures . Standard programming techniques organize procedure and data separ-
ately. In contrast, object-oriented systems deals with objects. An object has local data stored in its private

memory and local procedures that can manipulate the data.

CLASSICAL ORGANISATION

| I e HCEEE e KN | D 1 D 2 D 3
[rs [ arj[raa] F:7] [
r Y
CBJECT ORIENTED ORGANISATION
o 3 I
|D e I
L S

2) Messages - A local procedure of an object called “a method,” is triggered in another object. The
execution of the method may alter the local data and possibly send messages to other objects. When the
method is completed, the control and value (which may be an object) is returned to the calling method

which is then continued.

MESSAGES

3) Classes and instances . Every object is an instance of a class. There may be many instances of a

class. During the execution of program, some instances are created, other may be cancelled. Every instance



122 8 & %

has the set of variables defined at class level but it has its own values. Every instance knows the same
methods. The methods are defined at class level but are executed at instance level i. e. they use the

variable of the instance.

Variables
Vi

CLASS v

Methods

Vi
V2

INSTANCES
Vie2

V2 ="'abg

Classes and Instances

4) Class hierarchy : The set of class is organized according to a relation “subclass” which induces a tree
structure. A class inherits the properties of its parents, 1. e. it has their instance variables and methods.
However a class may redefined a method of an upper level. In this way, methods can defined for the most

generic classes, the exception being treated for the specific classes that require a different handling.

airaktes
crLany
Withsds

T R

Class Hierarchy

5) Abstraction . Abstraction is a method of tracking complex problems. The purpese is to develop a
conceptual model of reality, emphasizing important properties of the entities at each level in the model,
while suppressing the less important ones. The following are a few aspects of abstraction that can be useful

in creating complex conceptual models :



TE¥REEEG HIE F218H 19904 55 123

—Classification : grouping entities that similar properties into a class. The inverse of classification is in-
stantiation.

— Aggregation - treats a group of objects as a single object. An aggregate object can be decomposed into
instances of the component objects.

—Generalization : is a form of abstraction where similar objects are related to a higher level generic object.
The constituent objects are considered specialization of the generic object.

—Association tis a form of abstraction where a group of similar objects is considered as higher level set
object. The details of the member objects are suppressed and the properties of the set object are empha-
sized.

6) INHERITANCE : A class may inherit operations from superclasses and may have its operations inher-
ited by subclasses. Inheritance from a singles superclass is called single inheritance. Inheritance from multi-

ple superclasses is called multiple inheritance.

3.2 CLASS—BASED & CLASSLESS SYSTEMS

In Wegner's paper[9]. he clearly structures elements (objects, classes, inheritance, data abstraction, strong
typing. concurrence, persistence). Below figure represents Wegner's paradigm for a strongly type langauge.

Wegner's paradigm works nicely to control the access and assignment of values to the instance variables.
In the simpler applications where strong modularity is not reguired, both the objects and the classes can be
managed within the language, thus providing a uniform mechanism for both their design and their imple-
mentation. However in the more complex applications, stricter control must be adherent thus strengthening
the object’s modularity. This level of control is found in both the data abstraction and strong tying of the
objects.

This class-based paradigm is very useful if the desired behavior is known and a class of objects can be
defined. However, in a highly responsive interactive environement, it is often necessary to wait until a

message is received to determine how behavior from individual objects needs to be used.

+CLASSES
+ NHERTANCGE
- }

LU MM +DATA ABSTRACTIONSTRONG TYPNG

SMLLTAK STRONGLY TYPED OB ECT.ORENTED

In Lieberman paper[4], Prototype systems allows creating individual concepts first, than generalizing
them by saying what aspects of the concept are allowed to vary. In Leiberman’s classless system, structure
is not known but is determined during the process through the “re-collection” of similar prototype objects
found in the system. During this “re-collection,” each prototype object reacts according to the current state
of environment. With this concept in mind there 1s an alternative mechanism for sharing knowledge. This

alternative is called delegation.



124 8 %

3.3 BENEFITS

1) Natural approach ! like the objects described above. humans have some private memory and behave,
according to the specie they belong to. in response to messages received from others. Therefore our mental
structures are accustomed to analyze systems composed of sets of such instances. As most modern sophisti-
cated machine also have a private memory and a type dependent behavior. the object oriented modelling
approach not only looks very natural it is also very close to the real world[2]

2) Reuse, customization, extendibility : Although many problems contain a lot of similar elements, it is in
general very difficult to adapt them to a slightly different environment or to extend them. The reason is
that. as a result of separate organization of data and procedures used in classical languages, many details
have to be modified at a lot of different places{5]. Object oriented languages are much better in that
respect, the interface between objects is much stable and more general; the polymorphic features promote
not only the definition but also the implementation and use of generic functions. Incremental programming
and the possibility to write and test early parts of the programs at high abstraction level, even before
defining the detailed formats at the lower levels, allow for fast prototyping.

3) Network hiding ! By the mechanism of interaction through message, object-oriented systems are pre-
pared for distributed implementation. During development and test, all the objects may reside in the same
computer. But the objects never know whether message go far away to another computer via network or to
a local subroutine. The whole object set may then be lately partitioned and distributed on a set of inter-

connected processors without upsetting the program structure.

3.4 OBJECT ORIENTED SYSTEMS AND CIM

Most of the benefit mentioned above are in particular valuable for CIM[8). It is clear that the natural
decision model is a set of human and automated actors interacting through codified messages. Parallel and
distribution are almost always an ubiquitous prerequisite. Reuse, adaptability and extendibility are also of
paramount importance. To preserve the continuity of operations, the system must evolve locally, i. e. parts

of it must be upgraded to emerging technologies without perturbing the global coherence.

4, EMERGING TECHNOLOGY WITH Al

The fundamental tools required to support decision making may be represented in an object-oriented

paradigm. Here we apply a few select elemens of artificial intelligence against this paradigm.

4.1 SYMMETRIC RULE PROCESSOR

In Marvin Minsky's Book[6] common sense reasoning differs from logical reasoning in that the process
stops after every step to check whether the data found is as expected. If expectation are not met, common
sense reasoning will switch directions and hypothesis. Common sense reasoning can be applied using both
forward and backward chaining to resolve open issues. Neron Data[7] define this as symmetric rules proces-
sing where common sense behavior is an integration of both data-driven and hypothesis-driven motivations.
The application of common sense reasoning to help identify the purpose and intent of a message is the key

to the perceptual interpretation of a message received.

4,2 OPEN AT ARCHITECTURE
In building intelligent artificial systems for the CIM world, it is mandatory to think of those systems
performing therir tasks in information-rich and rapidly evolving environments. We are concerned with the

necessary interaction with the environment in terms of gathering information, detecting contradictions or



THRERE H13% F218 1990%F 58 125

changes, quickly shifting the attention and resources, and providing the external world with answers or
actions, in relation to a reasoning process.

System has been designed to allow easy integration into existing computing environments. The integra-
tion capabilites are .

1) Make system communicate with other process. (Event-driven architecture)

2) Customize systems’s interface.

)

3) Extend the processing capabilities with optimized external routines or existing math libraries.

4) Link system to custom database.

5) Embed systems’s reasoning capabilities into large scale application.

4.3 INTELLIGENT /0 INTERFACE MACHINE

1) Massively parallel, large-to-fine-grained multiple processor system typically capable of performing both
numerical and symbolic processing.

2) Multi-tasking, single-user, microprocessor-based, two to thirty MIPS workstations capable of perform-

ing both numerical and symbolic processing.

4.4 Geographically Independent, Distributed Database Machine
Geographical independent network of linearly expandable, fault tolerant, parallel processing computers
with a fully distributed operating system capable of performing distributed, fault tolerant SQL read/write

routines.

5. CONCLUSION

In the informational processing world, the system engineers are the master mechanics. In the past few
years they have been inundated with new tools in both artificial intelligence and object-oriented systems.
After understanding these tools, the system engineer’s real task is to state the requirements for a complex
manufacturing environment and determine what tool or complementary set of tools can be applied to satisfy

those requirements.

6. REFERENCE

1. Bartalanffy, L., “General Systems Theory-A Critical review” Systmes Behavior, Harper & Row 1972,
pp. 29—49.

2. Booch, G., “Object Oriented Development,” IEEE
Transactions on the software Engineering. Vol. SE2, No. 2, Feb 1986, pp. 211-—221.

3. Joyce, R, “Accepting Direct Control in Manufacturing,” February, 1987 APICS Factory of the Future
Conference.

4. Lieberman, H. “Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systmes”
OOPSLA 1986.

5. Meyer, B, “Reusability . The case for object oriented Design,” IEEE Software, March 1987, pp. 50—
64.

6. Minsky, M., “Society of the Mind,” 1986, Simon & Schuster.
Neron Data Inc., Nexpert Object Fundamentals, 1988.

8. Tayor, W. A, “Object-Oriented Programming . a new approach for automatic factories,” CIM REVIEW
1986, pp. 55—58.

9. Wegner, P., “Dimensions of Object-based Language Design,” OOPSLA 1987.



