자소 접촉특성 분석에 의한 한글패턴의 부분분리 및 인식

Separation of Subpatern and Recognition of Hanguel Patterns by Analysis of Feature of Contacting Phonemes

  • 고찬 (서울공업대학 전자계산학과) ;
  • 진용옥 (경희대학교 전자공학과)
  • Koh, Chan (Seoul National Polytechnic University. Dept. of Computer Science) ;
  • Chin, Yong-Ohk (Dept. of Electronics Eng. Kyung Hee University)
  • 발행 : 1990.07.01

초록

본 논문은 한글문자 인식을 위하여 새로운 접촉소자의 분리 및 자획연결 특징추출 알고리즘을 제안하였다. 자소 접촉특징을 분석하여 자소접촉 형태별로 분류하고 자획연결특징 추출, 접촉자소의 분리, 문자형식 분류를 시행한다. 분리된 자소로부터 설정된 표준패턴으로 정규화하고 자소별 굴곡특징의 상대위치값으로 부터의 특징을 입력패턴으로 신경망을 이용하여 인식 실험을 하였다. 여기에서의 학습은 BEP 알고리즘을 이용하였다. 접촉자소의 분리, 형식분리, 자획연결특징 추출 및 인식 실험에서 제안된 알고리즘이 좋은 결과를 나타내었다.

In this paper a new algorithm for separation of contacting subpattern and connective feature extraction of strokes is proposed. This algorithm is able to classification of the type of contacting parts, connective feature extreaction of strokes, separate the phoneme of contacting parts between strokes, classify the character types by feature classification of connecting parts and analysis of connecting attribute. Also, shape normalize into formal patterns and decide on the input pattern from position value of bending feature of this normalized shape and make an recognition experiment by neural network using BEP learining algorithm. This algorithm represents the good achievement ratio by separation of phoneme, classification of character type, connective feature extraction of stroke and recognition experiment.

키워드