A Novel Behavior, Bang-Sensitive Paralysis, Associated With The shibire Locus of Drosophila melanogaster

  • Published : 1990.09.01

Abstract

The Drosophila temperature-sensitive mutant shibire (shi) is paralyzed at restrictive temperature by a reversible block in synaptic transmission. To explore the functional relationship among shi gene products, viability and temperature-sensitive paralytic behavior were quantitaively analyzed for four shi alleles, shi$^{ts1}$, shi$^{ts2}$, shi$^{ts4}$, and shi$^{ST139}$, and their heteroallelic combinations. The hemizygous combination of shi alleles over deficiency was not completely lethal. shi$^{ts2}$ exhibited distinctively higher viability than other alleles. A novel behavior, bang sensitivity, was also found in shi/Df(1). This bang-sensitive paralytic behavior was compared with that of the typical bang-sensitive mutant flies. Heterozygotes, shi/+, are more severe in temperature sensitivity than deficiency hemizygotes, Df(1)/+. Heteroallelic combinations of shi were less sensitive to high temperature than homozygotes. Among all allelic combinations, shi$^{ts2}$/shi$^{ts4}$ showed an unexpected extreme reduction in temperature sensitivity. The results of allelic interactions among 4 shi alleles suggest that the shi mutations examined behave as antimorphic alleles and that the gene product of shi are likely to function in multimeric forms.

Keywords