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of natural resources in deeper water or employed

1. Introduction in a deep diving system for salvage, may deterio-
rate the fatigue life of cables.

Large dynamic tensions occurring in two typical When the dynamic tension exceeds the static
offshore applications, such as deep water moori- tension, for part of the cycle the cable is under
ngs and open sea towing, can result in slack-and- high tension, and for another part of the cycle
snapping phenomena of cable, and finally the ca- under no tension at all. This condition of slack in
ble fails. Also, a build-up of large dynamic tensile the cable may lead to a snap, that is, subsequent
forces in long vertical cables, used in deep sub- high build-up of tension leading to breakage or
mergence vehicles for exploration and harvesting failure by fatigue.

* Member, Naval Architecture & Ocean Engineering Dep't., University of Ulsan

_35_..



186

It is widely accepted in the offshore industry
that the use of submerged buoys and inserting
short synthetic-like segments are some of the re-
medies suggested.

In this paper, extreme tensions in snapping ho-
rizontal cables are analyzed in order to. compare

with experiments.

2. Dynamic Behavior of a Cable

2.1 Nonlinear Governing Equations

The 2-dimensional, nonlinear equations of mo-
tion of a cable with coplanar static configuration
(see Fig. 1), expressed along the local tangential

and normal directions are.”
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Fig. 1 Excitation and lagrangian coordinates
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T, static effective tension
T, dynamic effective tension
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tangential displacement based on the static co-
nfiguration

normal displacement based on the static confi-
guration

Lagrangian coordinate

static angle

dynamic angle

static strain

dynamic strain(fe—e,+e;)

mass per unit length

added mass per unit lengthMM=m+m,)
Young's modulus

cable sectional area

tangential component of the fluid drag force

normal component of the fluid drag force

The first two equations express the force equi-
librium in the tangential and normal directions
based on the static configuration respectively .
the next two equations express compatibility of

motion.

2.2 Nonlinearities in Governing Equations

From equations(1), the following nonlinear te-

rms can be identified.
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These terms are geometric nonlineartities, the
product of large dynamic tension and dynamic
angle, nonlinear inertia term, and nonlinear fluid

drage forces, respectively.
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2. 3 Simplified Cable Dynamic Equation

The fully nonlinear dynamic equation can be
simplified, in order to use efficiently nonlinear
numerical schemes, but care should be taken not
to oversimplify and hence omit important nonli-
near mechanisms.

We assume that the dynamic tension is almost
uniformly distributed along the cable for frequen-
cies which are not high enough to cause elastic
waves;l. e, an quasi-static stretch assumption.

Also, the axial motions of the cable becomes

much smaller than the transverse motions when
a horizontal cable is forced to move at the excita-
tion of moderate frequencies given on the end of
the cable."”

Then we simplify the formulation and construct

a relatively simple model for a horizontal cable as

follows.”
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Fig. 2 Comparison of extreme tensions : horizon-
tal excitation, amplitude=2.5¢m, static ten-
sion = 88N
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where
p mass density of water
p(L) tangential displacement imposed on the end
of the cable
Cy  drag coefficient

2.4 Behavior of a Cable Subject to Negative
Tension

Larger dynamic tension build-up in rough seas
may cause the total tension to become negative
in certain parts of the cable. This cannot be sus-
tained by a cable or chain due to their low ben-
ding stiffness. The appearance of even a small
negative overall tension sets in action a buckling
mechanism very quickly. On top of the formation
of a buckling mode, there occurs a free-falling of
the cable opposed only by the action of the drag
force, unlike a string with zero static curvature.
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Since the transition to negative tension is con-
tinuous, the cable under the influence of its own

weight has acquired a certain falling velocity by
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the time the cable goes slack.

It is reasonable to assume that, for moderately
large frequencies, the effect of buckling is restric-
ted to preventing the tension from becoming ne-
kinematically and dynamically

gative, while

contribute very small.

2.5 Clipping-off Model

In order to get a model of a slack and then
snapping cable, we assume that the buckling me-
chanism keeps the tension at near zero levels un-
til a positive value is regained, while its dynamic
behavior is governed by the balance of inertia
and drag forces as soon as the total tension in an
element of the cable reaches a negative value.
Then we reformulate governing equations as fol-

lows :

and set T\=—T,

2.6 Summary of Nonlinear Governing Equa-

tions
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ana T, is set equal to—T,.
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3. Applications

For the numerical scheme, we employ an expa-
nsion of the response in terms of Chebyshev pol-
ynomials;a collocation method spatially and New-
mark’s method for time integration. Approximate
solutions of the governing equations (3) and (4)
are sought in the form of a trucated series.

N

Fu(s, 0= Zl fo(Dbu(s)
where
Fx(s, t) approximate solution
fu(t)
ba(s)

expansion coefficients of F(s;t)

time independent orthogonal functions

Due to nonconstant terms in the governing
equations of the cable, the collocation method is
superior to Galerkin's method.”

The principal parameters of the horizontal ca-
ble used in the experiment of the Ship Research
Institute of Norway are found in Table 1.”

Table 1 Cable used in the experiment of the
Ship Research Institute of Norway”

| T,=88N M= 0.666kg/m 1
W=505 N/m EA="7.854,000N ‘
L=10.9774m D=0.01m

|
!
i

| Go=15

For high frequencies, and after clipping-off sets

in, numerically difficuities arise in the form of
high frequency oscillations, that eventually lead to
divergence. Also, smaller time steps must be used

to ensure numerical accuracy.

4. Conclusion

In Figure 3, differences between experimental
data and our numerical results above 1.5 Hz are

shown. This is due to the delayed onset of zero
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Fig. 3 Comparison of extreme tensions : horizon-
tal excitation, Amplitude="5c¢m, static ten-
sion=88N

tension(since the bending stiffness is capable of
supporting small negative tensions), relative to
our numerical model predictions.

If the dynamic tension becomes negative and of
amplitude equal to, or larger than the value of
the static tension, forcing the total tension to be-
come nonpositive, the small bending stiffness of
the cable, which can be neglected under less ext-
reme conditions, may become important due to
the lack of any other restoring mechanisms.

In Figures 2, 4 and 5, the prediction of extreme
tensions for the cable used in experiments sho-
wed good agreement in the maximum values of
total tensions while there were discrepancies in
the minimum values of them due to the delayed
onset of zero tension, ie., the bending siffness ef-
fect.
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Fig. 4 Comparison of extreme tensions : horizon-

tal excitation, amplitude="7.5cm, static ten-

sion=88N
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Fig. 5 Comparison of extreme tensions : horizon-
tal excitation, amplitude=10cm, static ten-
sion=88N
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