Operating characteristics of a subset selection procedure for selecting the best normal population with common unknown variance

최고의 정규 모집단을 뽑기 위한 부분집합선택절차론의 운용특성에 관한 연구

  • ;
  • Shanti S. Gupta (Dept. of Statistics, Purdue University, West Lafayette, IN, U. S. A.)
  • 손중권 (경북대학교 자연과학대학 통계학과) ;
  • Published : 1990.03.01

Abstract

The subset selection approach introduced by Gupta plays an important role in the multiple decision procedures. For the normal means problem with common unknown variance, some operating characteristics of the selection procedure have been investigated via Monte Carlo simulation. Also some properties including efficiencies of the selection procedure are examined when the data are contaminated.

지난 30여년간 급격히 발전해 온 다중결정이론 중 부분집합선택론은 매우 중요한 위치를 차지하고 있다. 특히 여러가지 형태의 부분집합선택절차론 중에서 최초로 소개된 Gupta형 선택절차론은 모든 절차론들의 기본이 되어 오고 있음으로 그 중요성은 널리 인식되고 있다. 더우기 응용부문에 있어서도 가장 많이 사용되고 있는 선택절차론들 중의 하나이기도 하다. 따라서 Gupta형 선책절차론에 대한 일반적인 성질들도 많이 규명되어 왔다. 특히 결정론적 측면에서나 베이스 이론적 측면에서의 최적성 및 점근적 효율성에 있어서는 Gupta와 Hsu(1978), Bj$\phi$rnstad(1980), 그리고 Bickel과 Yahav(1982)가 성질 들을 규명내지는 다른 형의 부분집합선택절차론들과 특정분포에 대해 비교 검토하였다. 또한 수집된 자료가 선택절차론의 근본 가정들을 위반할 경우가 실제로 다반사로 일어난다. 따라서 근본가정이 위배될 경우 선택절차론의 강건력에 대해서도 연구가 부분적으로 진행되었다. Gupta형 선택절차론과 중앙값 선택절차론과의 비교도 Gupta와 Singh(1980)과 Sohn(1985)에 의해 진행되었으며, 특히 스피리지 배치에서 점근적 효율성을 연구하였다. 하지만 부분집합선택절차론이 차지하는 중요성에 비해 그 자체에 대한 여러 측면에 있어서의 성질 및 운용특성에 대한 포괄적이고 일반적인 연구는 미흡한 편이다.

Keywords